ﻻ يوجد ملخص باللغة العربية
Android has become the most popular mobile operating system. Correspondingly, an increasing number of Android malware has been developed and spread to steal users private information. There exists one type of malware whose benign behaviors are developed to camouflage malicious behaviors. The malicious component occupies a small part of the entire code of the application (app for short), and the malicious part is strongly coupled with the benign part. In this case, the malware may cause false negatives when malware detectors extract features from the entire apps to conduct classification because the malicious features of these apps may be hidden among benign features. Moreover, some previous work aims to divide the entire app into several parts to discover the malicious part. However, the premise of these methods to commence app partition is that the connections between the normal part and the malicious part are weak. In this paper, we call this type of malware as Android covert malware and generate the first dataset of covert malware. To detect them, we first conduct static analysis to extract the call graphs. Through the deep analysis on graphs, we observe that although the correlations between the normal part and the malicious part in these graphs are high, the degree of these correlations has a distribution. Based on the observation, we design HomDroid to detect covert malware by analyzing the homophily of call graphs. We identify the ideal threshold of correlation to distinguish the normal part and the malicious part based on the evaluation results on a dataset of 4,840 benign apps and 3,385 covert malicious apps. According to our evaluation results, HomDroid is capable of detecting 96.8% of covert malware while the False Negative Rates of another four state-of-the-art systems (i.e., PerDroid, Drebin, MaMaDroid, and IntDroid) are 30.7%, 16.3%, 15.2%, and 10.4%, respectively.
Android malware has been on the rise in recent years due to the increasing popularity of Android and the proliferation of third party application markets. Emerging Android malware families are increasingly adopting sophisticated detection avoidance t
With the growth of mobile devices and applications, the number of malicious software, or malware, is rapidly increasing in recent years, which calls for the development of advanced and effective malware detection approaches. Traditional methods such
Due to its open-source nature, Android operating system has been the main target of attackers to exploit. Malware creators always perform different code obfuscations on their apps to hide malicious activities. Features extracted from these obfuscated
In recent years, social media has become a ubiquitous and integral part of social networking. One of the major attentions made by social researchers is the tendency of like-minded people to interact with one another in social groups, a concept which
We present BPFroid -- a novel dynamic analysis framework for Android that uses the eBPF technology of the Linux kernel to continuously monitor events of user applications running on a real device. The monitored events are collected from different com