ﻻ يوجد ملخص باللغة العربية
Optical isolators, while commonplace in bulk- and fiber-optic systems, remain a key missing component in integrated photonic systems. Isolation using magneto-optic effects has been difficult to implement due to fabrication restraints, motivating use of other non-reciprocal effects such as temporal modulation. We demonstrate a non-reciprocal modulator comprising a pair of microring modulators and a microring phase shifter in an active silicon photonic process which, in combination with standard frequency filters, facilitates isolation. Isolation up to 13 dB is measured with a 3 dB bandwidth of 2 GHz and insertion loss of 18 dB. As one potential application is cross-talk suppression in bi-directional communication links, we also show transmission of a 4 Gbps data signal through the isolator while retaining a wide-open eye diagram. This compact design, in combination with increased modulation efficiency, could enable modulator-based isolators to become a standard `black-box component in integrated photonics foundry platform component library.
Graphene is a 2D material with appealing electronic and optoelectronic properties. It is a zero-bandgap material with valence and conduction bands meeting in a single point (Dirac point) in the momentum space. Its conductivity can be changed by shift
We introduce phase-change material Ge2Sb2Te5 (GST) into metal-insulator-metal (MIM) waveguide systems to realize chipscale plasmonic modulators and switches in the telecommunication band. Benefitting from the high contrast of optical properties betwe
We demonstrated a silicon integrated microring modulator working at the 2-um waveband with an L-shaped PN junction. 15-GHz 3-dB electro-optic bandwidth and <1 Vcm modulation efficiency for 45-Gbps NRZ-OOK signaling is achieved at 1960 nm.
We describe a resonantly enhanced Mach-Zehnder modulator (MZM) that can be operated over a wide temperature range of 55C without being actively biased, while providing a significant resonant enhancement of 6.8 at the nominal wavelength / temperature
Reliable operation of photonic integrated circuits at cryogenic temperatures would enable new capabilities for emerging computing platforms, such as quantum technologies and low-power cryogenic computing. The silicon-on-insulator platform is a highly