ﻻ يوجد ملخص باللغة العربية
Quantum Language Models (QLMs) in which words are modelled as quantum superposition of sememes have demonstrated a high level of model transparency and good post-hoc interpretability. Nevertheless, in the current literature word sequences are basically modelled as a classical mixture of word states, which cannot fully exploit the potential of a quantum probabilistic description. A full quantum model is yet to be developed to explicitly capture the non-classical correlations within the word sequences. We propose a neural network model with a novel Entanglement Embedding (EE) module, whose function is to transform the word sequences into entangled pure states of many-body quantum systems. Strong quantum entanglement, which is the central concept of quantum information and an indication of parallelized correlations among the words, is observed within the word sequences. Numerical experiments show that the proposed QLM with EE (QLM-EE) achieves superior performance compared with the classical deep neural network models and other QLMs on Question Answering (QA) datasets. In addition, the post-hoc interpretability of the model can be improved by quantizing the degree of entanglement among the words.
Different flavors of transfer learning have shown tremendous impact in advancing research and applications of machine learning. In this work we study the use of a specific family of transfer learning, where the target domain is mapped to the source d
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA)
The recent success of question answering systems is largely attributed to pre-trained language models. However, as language models are mostly pre-trained on general domain corpora such as Wikipedia, they often have difficulty in understanding biomedi
We present some categorical investigations into Wittgensteins language-games, with applications to game-theoretic pragmatics and question-answering in natural language processing.
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce t