ترغب بنشر مسار تعليمي؟ اضغط هنا

Functorial Language Games for Question Answering

108   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some categorical investigations into Wittgensteins language-games, with applications to game-theoretic pragmatics and question-answering in natural language processing.

قيم البحث

اقرأ أيضاً

Distributional compositional (DisCo) models are functors that compute the meaning of a sentence from the meaning of its words. We show that DisCo models in the category of sets and relations correspond precisely to relational databases. As a conseque nce, we get complexity-theoretic reductions from semantics and entailment of a fragment of natural language to evaluation and containment of conjunctive queries, respectively. Finally, we define question answering as an NP-complete problem.
103 - Jules Hedges 2018
In categorical compositional semantics of natural language one studies functors from a category of grammatical derivations (such as a Lambek pregroup) to a semantic category (such as real vector spaces). We compositionally build game-theoretic semant ics of sentences by taking the semantic category to be the category whose morphisms are open games. This requires some modifications to the grammar category to compensate for the failure of open games to form a compact closed category. We illustrate the theory using simple examples of Wittgensteins language-games.
The recent success of question answering systems is largely attributed to pre-trained language models. However, as language models are mostly pre-trained on general domain corpora such as Wikipedia, they often have difficulty in understanding biomedi cal questions. In this paper, we investigate the performance of BioBERT, a pre-trained biomedical language model, in answering biomedical questions including factoid, list, and yes/no type questions. BioBERT uses almost the same structure across various question types and achieved the best performance in the 7th BioASQ Challenge (Task 7b, Phase B). BioBERT pre-trained on SQuAD or SQuAD 2.0 easily outperformed previous state-of-the-art models. BioBERT obtains the best performance when it uses the appropriate pre-/post-processing strategies for questions, passages, and answers.
201 - Daniel Khashabi 2019
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
147 - Yiwei Chen , Yu Pan , Daoyi Dong 2020
Quantum Language Models (QLMs) in which words are modelled as quantum superposition of sememes have demonstrated a high level of model transparency and good post-hoc interpretability. Nevertheless, in the current literature word sequences are basical ly modelled as a classical mixture of word states, which cannot fully exploit the potential of a quantum probabilistic description. A full quantum model is yet to be developed to explicitly capture the non-classical correlations within the word sequences. We propose a neural network model with a novel Entanglement Embedding (EE) module, whose function is to transform the word sequences into entangled pure states of many-body quantum systems. Strong quantum entanglement, which is the central concept of quantum information and an indication of parallelized correlations among the words, is observed within the word sequences. Numerical experiments show that the proposed QLM with EE (QLM-EE) achieves superior performance compared with the classical deep neural network models and other QLMs on Question Answering (QA) datasets. In addition, the post-hoc interpretability of the model can be improved by quantizing the degree of entanglement among the words.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا