ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of a gigabit transceiver for the ATLAS inner tracker pixel detector readout upgrade

110   0   0.0 ( 0 )
 نشر من قبل Tiankuan Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a gigabit transceiver prototype Application Specific Integrated Circuit (ASIC), GBCR, for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR is designed in a 65-nm CMOS technology and consists of four upstream receiver channels, a downstream transmitter channel, and an Inter-Integrated Circuit (I2C) slave. The upstream channels receive the data at 5.12 Gbps passing through 5-meter 34-American Wire Gauge (AWG) Twin-axial (Twinax) cables, equalize them, retime them with a recovered clock, and then drive an optical transmitter. The downstream channel receives the data at 2.56 Gbps from an optical receiver and drives the cable as same as the upstream channels. The jitter of the upstream channel output is measured to be 35 ps (peak-peak) when the Clock-Data Recovery (CDR) module is turned on and the jitter of the downstream channel output after the cable is 138 ps (peak-peak). The power consumption of each upstream channel is 72 mW when the CDR module is turned on and the downstream channel consumes 27 mW. GBCR survives the total ionizing dose of 200 kGy.

قيم البحث

اقرأ أيضاً

99 - C. Chen , V. Wallangen , D. Gong 2020
This paper presents the design and simulation results of a gigabit transceiver Application Specific Integrated Circuit (ASIC) called GBCR for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR has four upstream receiver channels and a downstream transmitter channel. Each upstream channel operates at 5.12 Gbps, while the downstream channel operates at 2.56 Gbps. In each upstream channel, GBCR equalizes a signal received through a 5-meter 34-American Wire Gauge (AWG) twin-axial cable, retimes the data with a recovered clock, and drives an optical transmitter. In the downstream channel, GBCR receives the data from an optical receiver and drives the same type of cable as the upstream channels. The output jitter of an upstream channel is 26.5 ps and the jitter of the downstream channel after the cable is 33.5 ps. Each upstream channel consumes 78 mW and each downstream channel consumes 27 mW. Simulation results of the upstream test channel suggest that a significant jitter reduction could be achieved with minimally increased power consumption by using a Feed Forward Equalizer (FFE) + Decision Feedback Equalization (DFE) in addition to the linear equalization of the baseline channel. GBCR is designed in a 65-nm CMOS technology.
255 - W. Zhang , C. Chen , D. Gong 2021
We present the characterization and quality control test of a gigabit cable receiver ASIC prototype, GBCR2, for the ATLAS Inner Tracker pixel detector upgrade. GBCR2 equalizes and retimes the uplink electrical signals from RD53B through a 6 m Twinax AWG34 cable to lpGBT. GBCR2 also pre-emphasizes downlink command signals through the same electrical connection from lpGBT to RD53B. GBCR2 has seven uplink channels each at 1.28 Gbps and two downlink channels each at 160 Mbps. The prototype is fabricated in a 65 nm CMOS process. The characterization of GBCR2 has been demonstrated that the total jitter of the output signal is 129.1 ps (peak-peak) in the non-retiming mode or 79.3 ps (peak-peak) in the retiming mode for the uplink channel and meets the requirements of lpGBT. The total power consumption of all uplink channels is 87.0 mW in the non-retiming mode and 101.4 mW in the retiming mode, below the specification of 174 mW. The two downlink channels consume less than 53 mW. A quality control test procedure is proposed and 169 prototype chips are tested. The yield is about 97.0%.
301 - F.J. Iguaz , F. Balli , M. Barbero 2018
This work presents a depleted monolithic active pixel sensor (DMAPS) prototype manufactured in the LFoundry 150,nm CMOS process. DMAPS exploit high voltage and/or high resistivity inclusion of modern CMOS technologies to achieve substantial depletion in the sensing volume. The described device, named LF-Monopix, was designed as a proof of concept of a fully monolithic sensor capable of operating in the environment of outer layers of the ATLAS Inner Tracker upgrade in 2025 for the High Luminosity Large Hadron Collider (HL-LHC). This type of devices has a lower production cost and lower material budget compared to presently used hybrid designs. In this work, the chip architecture will be described followed by the characterization of the different pre-amplifier and discriminator flavors with an external injection signal and an iron source (5.9,keV x-rays).
To cope with the harsh environment foreseen at the high luminosity conditions of HL- LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 {mu}m thick n-on-p sensors with active edge, a second one composed of 100 and 130 {mu}m thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY and their performance before and after irradiation will be presented.
78 - Jike Wang 2017
ATLAS is making extensive efforts towards preparing a detector upgrade for the high luminosity operations of the LHC (HL-LHC), which will commence operation in about 10 years. The current ATLAS Inner Detector will be replaced by an all-silicon tracke r (comprising an inner Pixel tracker and outer Strip tracker). The software currently used for the new silicon tracker is broadly inherited from that used for the LHC Run-1 and Run-2, but many new developments have been made to better fulfill the future detector and operation requirements. One aspect in particular which will be highlighted is the simulation software for the Strip tracker. The available geometry description software (including the detailed description for all the sensitive elements, the services, etc.) did not allow for accurate modelling of the planned detector design. A range of sensors/layouts for the Strip tracker are being considered and must be studied in detailed simulations in order to assess the performance and ascertain that requirements are met. For this, highly flexibility geometry building is required from the simulation software. A new Xml-based detector description framework has been developed to meet the aforementioned challenges. We will present the design of the framework and its validation results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا