ﻻ يوجد ملخص باللغة العربية
The bulk photovoltaic effect (BPVE) has attracted an increasing interest due to its potential to overcome the efficiency limit of traditional photovoltaics, and much effort has been devoted to understanding its underlying physics. However, previous work has shown that theoretical models of the shift current and the phonon-assisted ballistic current in real materials do not fully account for the experimental BPVE photocurrent, and so other mechanisms should be investigated in order to obtain a complete picture of BPVE. In this Letter, we demonstrate two approaches that enable the ab initio calculation of the ballistic current originating from the electron-hole interaction in semiconductors. Using BaTiO$_3$ and MoS$_2$ as two examples, we show clearly that for them the asymmetric scattering from electron-hole interaction is less appreciable than that from electron-phonon interaction, indicating more scattering processes need to be included to further improve the BPVE theory. Moreover, our approaches build up a venue for predicting and designing materials with larger ballistic current due to electron-hole interactions.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates fro
The electronic transport behaviour of materials determines their suitability for technological applications. We develop an efficient method for calculating carrier scattering rates of solid-state semiconductors and insulators from first principles in
The bulk photovoltaic effect generates intrinsic photocurrents in materials without inversion symmetry. Shift current is one of the bulk photovoltaic phenomena related to the Berry phase of the constituting electronic bands: photo-excited carriers co
We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the $G_0W_0$ level of theory for systems with hundreds of atoms. In additio
We present a Greens function approach to calculate the Dzyaloshinskii-Moriya interactions (DMI) from first principles electronic structure calculations, that is computationally more efficient and accurate than the most-commonly employed supercell and