ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on Lisbon integrals and their associated D--modules

53   0   0.0 ( 0 )
 نشر من قبل Daniel Barlet
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Daniel Barlet




اسأل ChatGPT حول البحث

The aim of this Note is to specify the links between the three kinds of Lisbon integrals, trace functions and trace forms with the corresponding D--modules.



قيم البحث

اقرأ أيضاً

54 - Daniel Barlet 2019
We introduce new complex analytic integral transforms, the Lisbon Integrals, which naturally arise in the study of the affine space $mathbb{C}^k$ of unitary polynomials $P_s(z)$ where $sinmathbb{C}^k$ and $zin mathbb{C}$, $s_i$ identified to the $i-$ th symmetric function of the roots of $P_s(z)$. We completely determine the $mathcal{D}$-modules (or systems of partial differential equations) the Lisbon Integrals satisfy and prove that they are their unique global solutions. If we specify a holomorphic function $f$ in the $z$-variable, our construction induces an integral transform which associates a regular holonomic module quotient of the sub-holonomic module we computed. We illustrate this correspondence in the case of a $1$-parameter family of exponentials $f_t(z) = exp(t z)$ with $t$ a complex parameter.
137 - Daniel Barlet 2021
We explain that in the study of the asymptotic expansion at the origin of a period integral like $gamma$z $omega$/df or of a hermitian period like f =s $rho$.$omega$/df $land$ $omega$ /df the computation of the Bernstein polynomial of the fresco (fil tered differential equation) associated to the pair of germs (f, $omega$) gives a better control than the computation of the Bernstein polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is easier to compute as it has a better functoriality and smaller degree. We illustrate this in the case where f $in$ C[x 0 ,. .. , x n ] has n + 2 monomials and is not quasi-homogeneous, by giving an explicite simple algorithm to produce a multiple of the Bernstein polynomial when $omega$ is a monomial holomorphic volume form. Several concrete examples are given.
Let f be a quasi-homogeneous polynomial with an isolated singularity. We compute the length of the D-modules $Df^c/Df^{c+1}$ generated by complex powers of f in terms of the Hodge filtration on the top cohomology of the Milnor fiber. For 1/f we obtai n one more than the reduced genus of the singularity. We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the aforementioned quotient is nonzero when c is a root of the b-function of f (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these D-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, it s relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities, and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $mathcal{M}mapstomathcal{M}_{mathrm{reg}}$, called regularization. Recall that $mathcal{M}_{mathrm{r eg}}$ is reconstructed from the de Rham complex of $mathcal{M}$ by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of their properties. In particular, we provide a germ formula for the sheafification of enhanced specialization and microlocalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا