ﻻ يوجد ملخص باللغة العربية
We introduce new complex analytic integral transforms, the Lisbon Integrals, which naturally arise in the study of the affine space $mathbb{C}^k$ of unitary polynomials $P_s(z)$ where $sinmathbb{C}^k$ and $zin mathbb{C}$, $s_i$ identified to the $i-$th symmetric function of the roots of $P_s(z)$. We completely determine the $mathcal{D}$-modules (or systems of partial differential equations) the Lisbon Integrals satisfy and prove that they are their unique global solutions. If we specify a holomorphic function $f$ in the $z$-variable, our construction induces an integral transform which associates a regular holonomic module quotient of the sub-holonomic module we computed. We illustrate this correspondence in the case of a $1$-parameter family of exponentials $f_t(z) = exp(t z)$ with $t$ a complex parameter.
The aim of this Note is to specify the links between the three kinds of Lisbon integrals, trace functions and trace forms with the corresponding D--modules.
We explain that in the study of the asymptotic expansion at the origin of a period integral like $gamma$z $omega$/df or of a hermitian period like f =s $rho$.$omega$/df $land$ $omega$ /df the computation of the Bernstein polynomial of the fresco (fil
We take a new look at the curvilinear Hilbert scheme of points on a smooth projective variety $X$ as a projective completion of the non-reductive quotient of holomorphic map germs from the complex line into $X$ by polynomial reparametrisations. Using
This paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds threedimensional, with Picard number equal to one. We study the relations between alge
Let s 1 ,. .. , s k be the elementary symmetric functions of the complex variables x 1 ,. .. , x k. We say that F $in$ C[s 1 ,. .. , s k ] is a trace function if their exists f $in$ C[z] such that F (s 1 ,. .. , s k ] = k j=1 f (x j) for all s $in$ C