ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping dependence of electronic structure of infinite-layer NdNiO2

53   0   0.0 ( 0 )
 نشر من قبل Zhao Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electronic structure of nickelate superconductor NdNiO2 upon hole doping, by means of density-functional theory and dynamical mean-field theory. We demonstrate the strong intrinsic hybridization between strongly correlated states formed by Ni-3dx2-y2 orbital and itinerant electrons due to Nd-5d and Ni-3dz2 orbitals, producing a valence-fluctuating correlated metal as the normal state of hole-doped NdNiO2. The Hunds rule appears to play a dominating role on multi-orbital physics in the lightly doped compound, while its effect is gradually reduced by increasing the doping level. Crucially, the hole-doping leads to intricate effects on Ni-3d orbitals, such as a non-monotonic change of electron occupation in lightly doped level, and a flipping orbital configuration in the overdoped regime. Additionaly, we also map out the topology of Fermi surface at different doping levels. These findings render a preferred window to peek into electron pairing and superconductivity.

قيم البحث

اقرأ أيضاً

87 - Zhao Liu , Zhi Ren , W. Zhu 2019
The recent discovery of Sr-doped infinite-layer nickelate $textrm{NdNiO}_2$ [D. Li et al. Nature 572, 624 (2019)] offers an exciting platform for investigating unconventional superconductivity in nickelatebased compounds. In this work, we present a f irst-principles calculations for the electronic and magnetic properties of undoped parent $textrm{NdNiO}_2$. Intriguingly, we found that: 1) the paramagnetic phase has complex Fermi pockets with 3D characters near the Fermi level; 2) by including electronelectron interactions, 3d-electrons of Ni tend to form $(pi, pi, pi)$ antiferromagnetic ordering at low temperatures; 3) with moderate interaction strength, 5d-electrons of Nd contribute small Fermi pockets that could weaken the magnetic order akin to the self-doping effect. Our results provide a plausible interpretation for the experimentally observed resistivity minimum and Hall coefficient drop. Moreover, we elucidate that antiferromagnetic ordering in $textrm{NdNiO}_2$ is relatively weak, arising from the small exchange coupling between 3d-electrons of Niand also hybridization with 5d-electrons of Nd.
Using first-principles calculations, we analyze the evolution of the electronic structure and magnetic properties of infinite-layer nickelates RNiO$_2$ (R= rare-earth) as R changes across the lanthanide series from La to Lu. By correlating these chan ges with in-plane and out-of-plane lattice parameter reductions, we conclude that the in-plane Ni-O distance is the relevant control parameter in infinite-layer nickelates. An antiferromagnetic ground state is obtained for all RNiO$_2$ (R=La-Lu). This antiferromagnetic state remains metallic across the lanthanide series and is defined by a multiorbital picture with low-energy relevance of a flat Ni-d$_{z^2}$ band pinned at the Fermi level, in contrast to cuprates. Other non-cuprate-like properties such as the involvement of R-$d$ bands at the Fermi level, a large charge transfer energy, and a suppressed superexchange are robust for all RNiO$_2$ materials.
153 - I. Leonov , S. Y. Savrasov 2020
We present a theoretical study of the effect of electron-electron interactions and Sr doping on the electronic structure of infinite-layer (Nd,Sr)NiO$_2$ using the density functional+dynamical mean-field theory approach. In particular, we explore the impact of epitaxial compressive strain that experience (Nd,Sr)NiO$_2$ films on the electronic properties, magnetic correlations, and exchange couplings. Our results reveal the crucial importance of orbital-dependent correlation effects in the Ni $3d$ shell of Sr-doped NdNiO$_2$. Upon doping with Sr, it undergoes a Lifshitz transition which is accompanied by a reconstruction of magnetic correlations: For Sr $x<0.2$ (Nd,Sr)NiO$_2$ adopts the Neel $(111)$ antiferromagnetic (AFM) order, while for $x>0.2$ the $C$-type $(110)$ AFM sets in the unstrained (Nd,Sr)NiO$_2$, with a highly frustrated region at $x simeq 0.2$, all within DFT+DMFT at $T=290$ K. Our results for the Neel AFM at Sr $x=0$ suggest that AFM NdNiO$_2$ appears at the verge of a Mott-Hubbard transition, providing a plausible explanation for the experimentally observed weakly insulating behavior of NdNiO$_2$ for Sr $x<0.1$. We observe that the Lifshitz transition makes a change of the band structure character from electron- to hole-like with Sr $x$, in agreement with recent experiments. Our results for magnetic couplings demonstrate an unanticipated frustration of the Ni $3d$ magnetic moments, which suppresses magnetic order near Sr $x=0.2$. We find that the effect of frustration is maximal for Sr doping $x simeq 0.1-0.2$ that nearly corresponds to the experimentally observed doping value. We conclude that the in-plane strain adjusts a bandwidth of the Ni $x^2-y^2$ band, i.e., controls the effect of electron correlations in the Ni $x^2-y^2$ orbitals. The electronic properties of (Nd,Sr)NiO$_2$ reveal an anomalous sensitivity upon a change of the crystal structure parameters.
605 - M. Hepting , D. Li , C. J. Jia 2019
The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped inf inite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprates - transition metal oxide layers separated by a rare-earth spacer layer - formal valence counting suggests that these materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-interacting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2-y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics, well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo- or Anderson-lattice-like oxide-intermetallic replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
63 - I. Leonov , S. L. Skornyakov , 2020
Motivated by the recent discovery of superconductivity in the infinite-layer (Sr,Nd)NiO$_2$ films with Sr content $x simeq0.2$ [Li et al., Nature (London) textbf{572}, 624 (2019)], we examine the effects of electron correlations and Sr-doping on the electronic structure, Fermi surface topology, and magnetic correlations in (Nd,Sr)NiO$_2$ using a combination of dynamical mean-field theory of correlated electrons and band-structure methods. Our results reveal a remarkable orbital selective renormalization of the Ni $3d$ bands, with $m$*/$msim 3$ and 1.3 for the $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals, respectively, that suggests orbital-dependent localization of the Ni $3d$ states. We find that upon hole doping (Nd,Sr)NiO$_2$ undergoes a Lifshitz transition of the Fermi surface which is accompanied by a change of magnetic correlations from the three-dimensional (3D) Neel $G$-type (111) to the quasi-2D $C$-type (110). We show that magnetic interactions in (Nd,Sr)NiO$_2$ demonstrate an unanticipated frustration, which suppresses magnetic order, implying the importance of in-plane spin fluctuations to explain its superconductivity. Our results suggest that frustration is maximal for Sr-doping $x simeq 0.1$--0.2, which is in agreement with an experimentally observed doping value Sr $x simeq 0.2$ of superconducting (Nd,Sr)NiO$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا