ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of epitaxial strain on the electronic structure and magnetic correlations in infinite-layer (Nd,Sr)NiO$_2$

154   0   0.0 ( 0 )
 نشر من قبل Ivan Leonov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of the effect of electron-electron interactions and Sr doping on the electronic structure of infinite-layer (Nd,Sr)NiO$_2$ using the density functional+dynamical mean-field theory approach. In particular, we explore the impact of epitaxial compressive strain that experience (Nd,Sr)NiO$_2$ films on the electronic properties, magnetic correlations, and exchange couplings. Our results reveal the crucial importance of orbital-dependent correlation effects in the Ni $3d$ shell of Sr-doped NdNiO$_2$. Upon doping with Sr, it undergoes a Lifshitz transition which is accompanied by a reconstruction of magnetic correlations: For Sr $x<0.2$ (Nd,Sr)NiO$_2$ adopts the Neel $(111)$ antiferromagnetic (AFM) order, while for $x>0.2$ the $C$-type $(110)$ AFM sets in the unstrained (Nd,Sr)NiO$_2$, with a highly frustrated region at $x simeq 0.2$, all within DFT+DMFT at $T=290$ K. Our results for the Neel AFM at Sr $x=0$ suggest that AFM NdNiO$_2$ appears at the verge of a Mott-Hubbard transition, providing a plausible explanation for the experimentally observed weakly insulating behavior of NdNiO$_2$ for Sr $x<0.1$. We observe that the Lifshitz transition makes a change of the band structure character from electron- to hole-like with Sr $x$, in agreement with recent experiments. Our results for magnetic couplings demonstrate an unanticipated frustration of the Ni $3d$ magnetic moments, which suppresses magnetic order near Sr $x=0.2$. We find that the effect of frustration is maximal for Sr doping $x simeq 0.1-0.2$ that nearly corresponds to the experimentally observed doping value. We conclude that the in-plane strain adjusts a bandwidth of the Ni $x^2-y^2$ band, i.e., controls the effect of electron correlations in the Ni $x^2-y^2$ orbitals. The electronic properties of (Nd,Sr)NiO$_2$ reveal an anomalous sensitivity upon a change of the crystal structure parameters.

قيم البحث

اقرأ أيضاً

We investigate the optical properties of the normal state of the infinite-layer La$_{1-x}$Sr$_x$NiO$_2$ using DFT+DMFT. We find a correlated metal which exhibits substantial transfer of spectral weight to high energies relative to the density functio nal theory. The correlations are not due to Mott physics, which would suppress the charge fluctuations and integrated optical spectral weight as we approach a putative insulating state. Instead we find the unusual situation, that the integrated optical spectral weight {it decreases} with doping and {it increases } with increasing temperature. We contrast this with the coherent component of the optical conductivity, which {it decreases} with increasing temperature as a result of a coherence$-$incoherence crossover. Our optical studies support a picture of a Hunds metallic state, where dynamical orbital fluctuations are visible at intermediate energies, even if at low energies the Fermi surface has primarily $d_{x^2 - y^2}$ character and we propose a low-energy two-band model with atom centered $e_g$ states.
To understand the superconductivity recently discovered in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, we carried out LDA+DMFT (local density approximation plus dynamical mean-field theory) and magnetic force response calculations. The on-site correlation in Ni-$3d $ orbitals causes notable changes in the electronic structure. The calculated temperature-dependent susceptibility exhibits the Curie-Weiss behavior, indicating the localized character of its moment. From the low-frequency behavior of self-energy, we conclude that the undoped phase of this nickelate is Fermi-liquid-like contrary to cuprates. Interestingly, the estimated correlation strength by means of the inverse of quasiparticle weight is found to increase and then decrease as a function of hole concentration, forming a dome-like shape. Another finding is that magnetic interactions in this material become two-dimensional by hole doping. While the undoped NdNiO$_2$ has the sizable out-of-plane interaction, hole dopings strongly suppress it. This two-dimensionality is maximized at the hole concentration $deltaapprox0.25$. Further analysis as well as the implications of our findings are presented.
We investigate charge distribution in the recently discovered high-$T_c$ superconductors, layered nickelates. With increasing value of charge-transfer energy we observe the expected crossover from the cuprate to the local triplet regime upon hole dop ing. We find that the $d-p$ Coulomb interaction $U_{dp}$ plays a role and makes Zhang-Rice singlets less favorable, while the amplitude of local triplets is enhanced. By investigating the effective two-band model with orbitals of $x^2-y^2$ and $s$ symmetries we show that antiferromagnetic interactions dominate for electron doping. The screened interactions for the $s$ band suggest the importance of rare-earth atoms in superconducting nickelates.
We present an implementation of the rotationally invariant slave boson technique as an impurity solver for density functional theory plus dynamical mean field theory (DFT+DMFT). Our approach provides explicit relations between quantities in the local correlated subspace treated with DMFT and the Bloch basis used to solve the DFT equations. In particular, we present an expression for the mass enhancement of the quasiparticle states in reciprocal space. We apply the method to the study of the electronic correlations in Sr$_2$RuO$_4$ under anisotropic strain. We find that the spin-orbit coupling plays a crucial role in the mass enhancement differentiation between the quasi-one-dimensional $alpha$ and $beta$ bands, and on its momentum dependence over the Fermi surface. The mass enhancement, however, is only weakly affected by either uniaxial or biaxial strain, even across the Lifshitz transition induced by the strain.
87 - Zhao Liu , Zhi Ren , W. Zhu 2019
The recent discovery of Sr-doped infinite-layer nickelate $textrm{NdNiO}_2$ [D. Li et al. Nature 572, 624 (2019)] offers an exciting platform for investigating unconventional superconductivity in nickelatebased compounds. In this work, we present a f irst-principles calculations for the electronic and magnetic properties of undoped parent $textrm{NdNiO}_2$. Intriguingly, we found that: 1) the paramagnetic phase has complex Fermi pockets with 3D characters near the Fermi level; 2) by including electronelectron interactions, 3d-electrons of Ni tend to form $(pi, pi, pi)$ antiferromagnetic ordering at low temperatures; 3) with moderate interaction strength, 5d-electrons of Nd contribute small Fermi pockets that could weaken the magnetic order akin to the self-doping effect. Our results provide a plausible interpretation for the experimentally observed resistivity minimum and Hall coefficient drop. Moreover, we elucidate that antiferromagnetic ordering in $textrm{NdNiO}_2$ is relatively weak, arising from the small exchange coupling between 3d-electrons of Niand also hybridization with 5d-electrons of Nd.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا