ﻻ يوجد ملخص باللغة العربية
An interesting class of orthogonal representations consists of the so-called turn-regular ones, i.e., those that do not contain any pair of reflex corners that point to each other inside a face. For such a representation H it is possible to compute in linear time a minimum-area drawing, i.e., a drawing of minimum area over all possible assignments of vertex and bend coordinates of H. In contrast, finding a minimum-area drawing of H is NP-hard if H is non-turn-regular. This scenario naturally motivates the study of which graphs admit turn-regular orthogonal representations. In this paper we identify notable classes of biconnected planar graphs that always admit such representations, which can be computed in linear time. We also describe a linear-time testing algorithm for trees and provide a polynomial-time algorithm that tests whether a biconnected plane graph with small faces has a turn-regular orthogonal representation without bends.
In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a line
We investigate a variety of problems of finding tours and cycle covers with minimum turn cost. Questions of this type have been studied in the past, with complexity and approximation results as well as open problems dating back to work by Arkin et al
In this paper we investigate relations between Koopman, groupoid and quasi-regular representations of countable groups. We show that for an ergodic measure class preserving action of a countable group G on a standard Borel space the associated groupo
We introduce a new class $mathcal{G}$ of bipartite plane graphs and prove that each graph in $mathcal{G}$ admits a proper square contact representation. A contact between two squares is emph{proper} if they intersect in a line segment of positive len
Given an initial placement of a set of rectangles in the plane, we consider the problem of finding a disjoint placement of the rectangles that minimizes the area of the bounding box and preserves the orthogonal order i.e. maintains the sorted orderin