ترغب بنشر مسار تعليمي؟ اضغط هنا

On Arrangements of Orthogonal Circles

190   0   0.0 ( 0 )
 نشر من قبل Alexander Wolff
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal unit circle intersection graphs.


قيم البحث

اقرأ أيضاً

We show that the maximum number of pairwise non-overlapping $k$-rich lenses (lenses formed by at least $k$ circles) in an arrangement of $n$ circles in the plane is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{5/2}} + frac{n}{k} right)$, and the sum of the de grees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is $Oleft(frac{n^{3/2}log{(n/k^3)}}{k^{3/2}} + nright)$. Two independent proofs of these bounds are given, each interesting in its own right (so we believe). We then show that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.
An interesting class of orthogonal representations consists of the so-called turn-regular ones, i.e., those that do not contain any pair of reflex corners that point to each other inside a face. For such a representation H it is possible to compute i n linear time a minimum-area drawing, i.e., a drawing of minimum area over all possible assignments of vertex and bend coordinates of H. In contrast, finding a minimum-area drawing of H is NP-hard if H is non-turn-regular. This scenario naturally motivates the study of which graphs admit turn-regular orthogonal representations. In this paper we identify notable classes of biconnected planar graphs that always admit such representations, which can be computed in linear time. We also describe a linear-time testing algorithm for trees and provide a polynomial-time algorithm that tests whether a biconnected plane graph with small faces has a turn-regular orthogonal representation without bends.
Given an arrangement of lines in the plane, what is the minimum number $c$ of colors required to color the lines so that no cell of the arrangement is monochromatic? In this paper we give bounds on the number c both for the above question, as well as some of its variations. We redefine these problems as geometric hypergraph coloring problems. If we define $Hlinecell$ as the hypergraph where vertices are lines and edges represent cells of the arrangement, the answer to the above question is equal to the chromatic number of this hypergraph. We prove that this chromatic number is between $Omega (log n / loglog n)$. and $O(sqrt{n})$. Similarly, we give bounds on the minimum size of a subset $S$ of the intersections of the lines in $mathcal{A}$ such that every cell is bounded by at least one of the vertices in $S$. This may be seen as a problem on guarding cells with vertices when the lines act as obstacles. The problem can also be defined as the minimum vertex cover problem in the hypergraph $Hvertexcell$, the vertices of which are the line intersections, and the hyperedges are vertices of a cell. Analogously, we consider the problem of touching the lines with a minimum subset of the cells of the arrangement, which we identify as the minimum vertex cover problem in the $Hcellzone$ hypergraph.
108 - Shunhao Oh , Seth Gilbert 2018
The Split Packing algorithm cite{splitpacking_ws, splitpackingsoda, splitpacking} is an offline algorithm that packs a set of circles into triangles and squares up to critical density. In this paper, we develop an online alternative to Split Packing to handle an online sequence of insertions and deletions, where the algorithm is allowed to reallocate circles into new positions at a cost proportional to their areas. The algorithm can be used to pack circles into squares and right angled triangles. If only insertions are considered, our algorithm is also able to pack to critical density, with an amortised reallocation cost of $O(clog frac{1}{c})$ for squares, and $O(c(1+s^2)log_{1+s^2}frac{1}{c})$ for right angled triangles, where $s$ is the ratio of the lengths of the second shortest side to the shortest side of the triangle, when inserting a circle of area $c$. When insertions and deletions are considered, we achieve a packing density of $(1-epsilon)$ of the critical density, where $epsilon>0$ can be made arbitrarily small, with an amortised reallocation cost of $O(c(1+s^2)log_{1+s^2}frac{1}{c} + cfrac{1}{epsilon})$.
We consider the problem of assigning radii to a given set of points in the plane, such that the resulting set of circles is connected, and the sum of radii is minimized. We show that the problem is polynomially solvable if a connectivity tree is give n. If the connectivity tree is unknown, the problem is NP-hard if there are upper bounds on the radii and open otherwise. We give approximation guarantees for a variety of polynomial-time algorithms, describe upper and lower bounds (which are matching in some of the cases), provide polynomial-time approximation schemes, and conclude with experimental results and open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا