ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Building from Asymptotic Safety with Higgs and Flavor Portals

72   0   0.0 ( 0 )
 نشر من قبل Tom Steudtner
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a comprehensive search for Standard Model extensions inspired by asymptotic safety. Our models feature a singlet matrix scalar field, three generations of vector-like leptons, and direct links to the Higgs and flavor sectors via new Yukawa and portal couplings. A novel feature is that the enlarged scalar sector may spontaneously break lepton flavor universality. We provide a complete two-loop renormalization group analysis of the running gauge, Yukawa, and quartic couplings to find ultraviolet fixed points and the BSM critical surface of parameters, $i.e.$ the set of boundary conditions at the TeV scale for which models remain well-behaved and predictive up to the Planck scale without encountering Landau poles or instabilities. This includes templates for asymptotically safe Standard Model extensions which match the measured values of gauge couplings and the Higgs, top, and bottom masses. We further detail the phenomenology of our models covering production, decay, fermion mixing, anomalous magnetic moments, effects from scalar mixing and chiral enhancement, and constraints on model parameters from data. Signatures at proton-proton and lepton colliders such as lepton flavor violation and displaced vertices, and the prospect for electric dipole moments or charged lepton-flavor-violating type processes, are also indicated.



قيم البحث

اقرأ أيضاً

Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions couple d to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of $SU(3)_Ctimes SU(2)_L$. Possible signatures at colliders are worked out and include $R$-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.
The measurements of the muon and electron anomalous magnetic moments hint at physics beyond the standard model. We show why and how models inspired by asymptotic safety can explain deviations from standard model predictions naturally. Our setup featu res an enlarged scalar sector and Yukawa couplings between leptons and new vector-like fermions. Using the complete two-loop running of couplings, we observe a well-behaved high energy limit of models including a stabilization of the Higgs. We find that a manifest breaking of lepton universality beyond standard model Yukawas is not necessary to explain the muon and electron anomalies. We further predict the tau anomalous magnetic moment, and new particles in the TeV energy range whose signatures at colliders are indicated. With small CP phases, the electron EDM can be as large as the present bound.
A scenario is presented where the $s$, $c$, and $b$ quark fusion Higgs production cross sections are enhanced with respect to those of the Standard Model. In particular the $c$ quark fusion production is very important and can account for a significa nt contribution at the Large Hadron Collider. The light Higgs couplings to vector bosons are sufficiently suppressed to allow its mass to lie below the LEP bound of 115 GeV and due to enhanced couplings to second family fermions, the Higgs decay to $mu$ pairs is large enough to be detectable. This is accomplished with a model incorporating three Higgs doublets charged under a flavor symmetry.
We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, indep endent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.
168 - Masaki J. S. Yang 2018
In this paper, we suggest a simple model which induces realistic flavor structure from mixing of flavored Higgs doublets. The idea is based on the decoupling limit. In a model with many Higgs doublets, the mass eigenstates of scalars are linear combi nations of Higgs doublets. If the mass matrix of Higgs fields has only one massless mode, and if the linear combination has flavor dependence, the induced Yukawa coupling will have nontrivial flavor structure. We suggest a mass matrix of flavored Higgs fields in a $U(2)_{L} times U(2)_{R}$ toy model. An advantage of this model is that all of the elements in Yukawa matrix can be determined from renormalizable Higgs potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا