ﻻ يوجد ملخص باللغة العربية
We perform a comprehensive search for Standard Model extensions inspired by asymptotic safety. Our models feature a singlet matrix scalar field, three generations of vector-like leptons, and direct links to the Higgs and flavor sectors via new Yukawa and portal couplings. A novel feature is that the enlarged scalar sector may spontaneously break lepton flavor universality. We provide a complete two-loop renormalization group analysis of the running gauge, Yukawa, and quartic couplings to find ultraviolet fixed points and the BSM critical surface of parameters, $i.e.$ the set of boundary conditions at the TeV scale for which models remain well-behaved and predictive up to the Planck scale without encountering Landau poles or instabilities. This includes templates for asymptotically safe Standard Model extensions which match the measured values of gauge couplings and the Higgs, top, and bottom masses. We further detail the phenomenology of our models covering production, decay, fermion mixing, anomalous magnetic moments, effects from scalar mixing and chiral enhancement, and constraints on model parameters from data. Signatures at proton-proton and lepton colliders such as lepton flavor violation and displaced vertices, and the prospect for electric dipole moments or charged lepton-flavor-violating type processes, are also indicated.
Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions couple
The measurements of the muon and electron anomalous magnetic moments hint at physics beyond the standard model. We show why and how models inspired by asymptotic safety can explain deviations from standard model predictions naturally. Our setup featu
A scenario is presented where the $s$, $c$, and $b$ quark fusion Higgs production cross sections are enhanced with respect to those of the Standard Model. In particular the $c$ quark fusion production is very important and can account for a significa
We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, indep
In this paper, we suggest a simple model which induces realistic flavor structure from mixing of flavored Higgs doublets. The idea is based on the decoupling limit. In a model with many Higgs doublets, the mass eigenstates of scalars are linear combi