ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavor structure from flavored Higgs mixing

169   0   0.0 ( 0 )
 نشر من قبل Masaki J.S. Yang
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Masaki J. S. Yang




اسأل ChatGPT حول البحث

In this paper, we suggest a simple model which induces realistic flavor structure from mixing of flavored Higgs doublets. The idea is based on the decoupling limit. In a model with many Higgs doublets, the mass eigenstates of scalars are linear combinations of Higgs doublets. If the mass matrix of Higgs fields has only one massless mode, and if the linear combination has flavor dependence, the induced Yukawa coupling will have nontrivial flavor structure. We suggest a mass matrix of flavored Higgs fields in a $U(2)_{L} times U(2)_{R}$ toy model. An advantage of this model is that all of the elements in Yukawa matrix can be determined from renormalizable Higgs potential.



قيم البحث

اقرأ أيضاً

Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass b ecomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.
166 - Daniele Dominici 2009
We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the ADD model, comparing the original derivation in the non-diagonal mass basis to that in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy for a process such as $WWto WW$ mediated by Higgs plus graviscalar intermediate resonances would follow a {it single} Breit-Wigner form with total width given by $Gamma^{tot}=Gamma_h^{SM}+Gamma_{invisible}$. We also compute the additional contributions to the invisible width due to direct Higgs to graviscalar pair decays. We find that the invisible width due to the latter is relatively small unless the Higgs mass is comparable to or larger than the effective extra-dimensional Planck mass.
Phenomenological studies of Flavored Dark Matter (FDM) models often have to assume a near-diagonal flavor structure in the coupling matrix in order to remain consistent with bounds from flavor violating processes. In this paper we show that for Lepto n FDM, such a structure can naturally arise from an extra dimensional setup. The extra dimension is taken to be flat, with the dark matter and mediator fields confined to a brane on one end of the extra dimension, and the Higgs field to a brane on the other end. The Standard Model fermion and gauge fields are the zero modes of corresponding bulk fields with appropriate boundary conditions. Global flavor symmetries exist in the bulk and on the FDM brane, while they are broken on the Higgs brane. Flavor violating processes arise due to the misalignment of bases for which the interactions on the two branes are diagonalized, and their size can be controlled by a choice of the lepton profiles along the extra dimension. By studying the parameter space for the model, we show that when relic abundance and indirect detection constraints are satisfied, the rates for flavor violating processes such as $muto egamma$ remain far below the experimental limits.
The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been propo sed to generate a large trilinear parameter, $A_t$, relaxing these constraints. The detailed survey of these models cite{Byakti:2013ti,Evans:2013kxa} so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses $sim $1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.
We discuss a neutrino mass model based on the S4 discrete symmetry where the symmetry breaking is triggered by the boundary conditions of the bulk right-handed neutrino in the fifth spacial dimension. While the symmetry restricts bare mass parameters to flavor-diagonal forms, the viable mixing angles emerge from the wave functions of the Kaluza-Klein modes which carry symmetry breaking effect. The magnitudes of the lepton mixing angles, especially the reactor angle is related to the neutrino mass patterns and the model will be tested in future neutrino experiments, e.g., an early (late) discovery of the reactor angle favors the normal (inverted) hierarchy. The size of extra dimension has a connection to the possible mass spectrum; a small (large) volume corresponds to the normal (inverted) mass hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا