ترغب بنشر مسار تعليمي؟ اضغط هنا

False metals, real insulators, and degenerate gapped metals

43   0   0.0 ( 0 )
 نشر من قبل Oleksandr Malyi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper deals with a significant family of compounds predicted by simplistic electronic structure theory to be metals but are, in fact, insulators. This false metallic state has been traditionally attributed in the literature to reflect the absence of proper treatment of electron-electron correlation (Mott insulators) whereas, in fact, even mean-field like density functional theory describes the insulating phase correctly if the restrictions posed on the simplistic theory are avoided. Such unwarranted restrictions included different forms of disallowing symmetry breaking described in this article. As science and technology of conductors have transitioned from studying simple elemental metals such as Al or Cu to compound conductors such as binary or ternary oxides and pnictides, a special class of degenerate but gapped metals has been noticed. Their presumed electronic configurations show the Fermi level inside the conduction band or valence band, yet there is an internal band gap between the principal band edges. The significance of this electronic configuration is that it might be unstable towards the formation of states inside the internal band gap when the formation of such states costs less energy than the energy gained by transferring carriers from the conduction band to these lower energy acceptor states, changing the original (false) metal to an insulator.

قيم البحث

اقرأ أيضاً

156 - Xin-Zhong Yan , C. S. Ting 2017
With a generic lattice model for electrons occupying a semi-infinite crystal with a hard surface, we study the eigenstates of the system with a bulk band gap (or the gap with nodal points). The exact solution to the wave functions of scattering state s is obtained. From the scattering states, we derive the criterion for the existence of surface states. The wave functions and the energy of the surface states are then determined. We obtain a connection between the wave functions of the bulk states and the surface states. For electrons in a system with time-reversal symmetry, with this connection, we rigorously prove the correspondence between the change of Kramers degeneracy of the surface states and the bulk time-reversal $Z_2$ invariant. The theory is applicable to systems of (topological) insulators, superconductors, and semi-metals. Examples for solving the edge states of electrons with/without the spin-orbit interactions in graphene with a hard zigzag edge and that in a two-dimensional $d$-wave superconductor with a (1,1) edge are given in appendices.
130 - Eva Zurek , Ove Jepsen , 2005
Within this paper we outline a method able to generate truly minimal basis sets which describe either a group of bands, a band, or even just the occupied part of a band accurately. These basis sets are the so-called NMTOs, Muffin Tin Orbitals of orde r N. For an isolated set of bands, symmetrical orthonormalization of the NMTOs yields a set of Wannier functions which are atom-centered and localized by construction. They are not necessarily maximally localized, but may be transformed into those Wannier functions. For bands which overlap others, Wannier-like functions can be generated. It is shown that NMTOs give a chemical understanding of an extended system. In particular, orbitals for the pi and sigma bands in an insulator, boron nitride, and a semi-metal, graphite, will be considered. In addition, we illustrate that it is possible to obtain Wannier-like functions for only the occupied states in a metallic system by generating NMTOs for cesium. Finally, we visualize the pressure-induced s to d transition.
Electronic stopping of H and He ions in metals and insulators is analyzed at velocities below 0.2 atomic units, i.e. below 1 keV for H and below 4 keV for He. In metals, stopping of H ions is affected by d-electrons only when the d-band extends up to the Fermi energy; for He ions, also d-bands well below the Fermi energy contribute significantly to electronic stopping. In insulators, the low threshold velocity for electronic stopping cannot be explained by electron-hole pair excitation; charge exchange cycles, however, may govern the threshold behavior of electronic stopping in ionic crystals.
Recently published discoveries of acoustic and optical mode inversion in the phonon spectrum of certain metals became the first realistic example of non-interacting topological bosonic excitations in existing materials. However, the observable physic al and technological use of such topological phonon phases remained unclear. In this work we provide a strong theoretical and numerical evidence that for a class of metallic compounds (known as triple point topological metals), the points in the phonon spectrum, at which three (two optical and one acoustic) phonon modes (bands) cross, represent a well-defined topological material phase, in which the hosting metals have very strong thermoelectric response. The triple point bosonic collective excitations appearing due to these topological phonon band-crossing points significantly suppress the lattice thermal conductivity, making such metals phonon-glass like. At the same time, the topological triple-point and Weyl fermionic quasiparticle excitations present in these metals yield good electrical transport (electron-crystal) and cause a local enhancement in the electronic density of states near the Fermi level, which considerably improves the thermopower. This combination of phonon-glass and electron-crystal is the key for high thermoelectric performance in metals. We call these materials topological thermoelectric metals and propose several newly predicted compounds for this phase (TaSb and TaBi). We hope that this work will lead researchers in physics and materials science to the detailed study of topological phonon phases in electronic materials, and the possibility of these phases to introduce novel and more efficient use of thermoelectric materials in many everyday technological applications.
We study a dual flavor fermion model where each of the flavors form a Sachdev-Ye-Kitaev (SYK) system with arbitrary and possibly distinct $q$-body interactions. The crucial new element is an arbitrary all-to-all $r$-body interaction between the two f lavors. At high temperatures the model shows a strange metal phase where both flavors are gapless, similar to the usual single flavor SYK model. Upon reducing temperature, the coupled system undergoes phase transitions to previously unseen phases - first, a strange half metal (SHM) phase where one flavor remains a strange metal while the other is gapped, and, second, a Mott insulating phase where both flavors are gapped. At a fixed low temperature we obtain transitions between these phases by tuning the relative fraction of sites for each flavor. We discuss the physics of these phases and the nature of transitions between them. This work provides an example of an instability of the strange metal with potential to provide new routes to study strongly correlated systems through the rich physics contained in SYK like models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا