ﻻ يوجد ملخص باللغة العربية
We study a dual flavor fermion model where each of the flavors form a Sachdev-Ye-Kitaev (SYK) system with arbitrary and possibly distinct $q$-body interactions. The crucial new element is an arbitrary all-to-all $r$-body interaction between the two flavors. At high temperatures the model shows a strange metal phase where both flavors are gapless, similar to the usual single flavor SYK model. Upon reducing temperature, the coupled system undergoes phase transitions to previously unseen phases - first, a strange half metal (SHM) phase where one flavor remains a strange metal while the other is gapped, and, second, a Mott insulating phase where both flavors are gapped. At a fixed low temperature we obtain transitions between these phases by tuning the relative fraction of sites for each flavor. We discuss the physics of these phases and the nature of transitions between them. This work provides an example of an instability of the strange metal with potential to provide new routes to study strongly correlated systems through the rich physics contained in SYK like models.
Even as the understanding of the mechanism behind correlated insulating states in magic-angle twisted bilayer graphene converges towards various kinds of spontaneous symmetry breaking, the metallic normal state above the insulating transition tempera
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO$_3$, is contrasted to the quantum behavior of orbitals in frustr
Mott insulators sometimes show dramatic changes in their electronic states after photoirradiation, as indicated by photoinduced Mott-insulator-to-metal transition. In the photoexcited states of Mott insulators, electron wavefunctions are more delocal
Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under AC driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cut
The inverse Faraday effect (IFE), where a static magnetization is induced by circularly polarized light, offers a promising route to ultrafast control of spin states. Here we study the inverse Faraday effect in Mott insulators using the Floquet theor