ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of spin Hall conductivity in W-Ta alloy

103   0   0.0 ( 0 )
 نشر من قبل Jun-Young Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jun-young Kim




اسأل ChatGPT حول البحث

Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120 {mu}W cm). At 11% Ta concentration, a remarkably high spin Hall angle value of - 0.3 is achieved with a low longitudinal resistivity 100 {mu}W cm, which could lead to a very low power consumption for this W-based alloy. This work demonstrates sputter-deposited W-Ta alloys could be a promising material for power-efficient spin current generation.

قيم البحث

اقرأ أيضاً

As spintronic devices become more and more prevalent, the desire to find Pt free materials with large spin Hall effects is increasing. Previously it was shown that Beta W, the metastable A15 structured variant of pure W, has charge-spin conversion ef ficiencies on par with Pt, and it was predicted that Beta W(Ta) alloys should be even more efficient. Here we demonstrate the enhancement of the spin Hall ratio (SHR) in A15-phase Beta W films doped with Ta (W(4-x)Tax where x is between 0.28 and 0.4, deposited at room temperature using DC magnetron co-sputtering. In close agreement with theoretical predictions, we find that the SHR of the doped films was approx. 9 percent larger than pure Beta W films. We also found that the SHRs in devices with Co2Fe6B2 were nearly twice as large as the SHRs in devices with Co4Fe4B2. This work shows that by optimizing deposition parameters and substrates, the fabrication of the optimum W3Ta alloy should be feasible, opening the door to commercially viable, Pt free, spintronic devices.
A key challenge in manipulating the magnetization in heavy-metal/ferromagnetic bilayers via the spin-orbit torque is to identify materials that exhibit an efficient charge-to-spin current conversion. Ab initio electronic structure calculations reveal that the intrinsic spin Hall conductivity (SHC) for pristine $beta$-W is about sixty percent larger than that of $alpha$-W. More importantly, we demonstrate that the SHC of $beta$-W can be enhanced via Ta alloying. This is corroborated by spin Berry curvature calculations of W$_{1-x}$Ta$_x$ ($x$ $sim$ 12.5%) alloys which show a giant enhancement of spin Hall angle of up to $approx$ $-0.5$. The underlying mechanism is the synergistic behavior of the SHC and longitudinal conductivity with Fermi level position. These findings, not only pave the way for enhancing the intrinsic spin Hall effect in $beta$-W, but also provide new guidelines to exploit substitutional alloying to tailor the spin Hall effect in various materials.
385 - P. Laczkowski , Y. Fu , H. Yang 2017
We present measurements of the Spin Hall Effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and Ferromagnetic-Resonance/spin pumping technique. The main result is the identi fication of a large enhancement of the Spin Hall Angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as + 0.5 (i.e $50%$) for about 10% of Ta. In contrast the SHA in AuW does not exceed + 0.15 and can be explained by intrinsic SHE of the alloy without significant extrinsic contribution from skew or side-jump scattering by W impurities. The AuTa alloys, as they combine a very large SHA with a moderate resistivity (smaller than $85,muOmega.cm$), are promising for spintronic devices exploiting the SHE.
We have experimentally studied the effects on the spin Hall angle due to systematic addition of Pt into the light metal Cu. We perform spin torque ferromagnetic resonance measurements on Py/CuPt bilayer and find that as the Pt concentration increases , the spin Hall angle of CuPt alloy increases. Moreover, only 28% Pt in CuPt alloy can give rise to a spin Hall angle close to that of Pt. We further extract the spin Hall resistivity of CuPt alloy for different Pt concentrations and find that the contribution of skew scattering is larger for lower Pt concentrations, while the side-jump contribution is larger for higher Pt concentrations. From technological perspective, since the CuPt alloy can sustain high processing temperatures and Cu is the most common metallization element in the Si platform, it would be easier to integrate the CuPt alloy based spintronic devices into existing Si fabrication technology.
117 - Yang Ji , J. Miao , K. K. Meng 2018
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resis tances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا