ﻻ يوجد ملخص باللغة العربية
We present measurements of the Spin Hall Effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and Ferromagnetic-Resonance/spin pumping technique. The main result is the identification of a large enhancement of the Spin Hall Angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as + 0.5 (i.e $50%$) for about 10% of Ta. In contrast the SHA in AuW does not exceed + 0.15 and can be explained by intrinsic SHE of the alloy without significant extrinsic contribution from skew or side-jump scattering by W impurities. The AuTa alloys, as they combine a very large SHA with a moderate resistivity (smaller than $85,muOmega.cm$), are promising for spintronic devices exploiting the SHE.
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one shoul
Persistent confusion has existed between the intrinsic (Berry curvature) and the side jump mechanisms of anomalous Hall effect (AHE) in ferromagnets. We provide unambiguous identification of the side jump mechanism, in addition to the skew scattering
Spin wave and magnetic texture are two elementary excitations in magnetic systems, and their interaction leads to rich magnetic phenomena. By describing the spin wave and the magnetic texture using their own collective coordinates, we find that they
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resis
Heavy metal-ferromagnet bilayer structures have attracted great research interest for charge-to-spin interconversion. In this work, we have investigated the effect of the permalloy seed layer on the Ta polycrystalline phase and its spin Hall angle. I