ﻻ يوجد ملخص باللغة العربية
This work focuses on the reconstruction of sparse signals from their 1-bit measurements. The context is the one of 1-bit compressive sensing where the measurements amount to quantizing (dithered) random projections. Our main contribution shows that, in addition to the measurement process, we can additionally reconstruct the signal with a binarization of the sensing matrix. This binary representation of both the measurements and sensing matrix can dramatically simplify the hardware architecture on embedded systems, enabling cheaper and more power efficient alternatives. Within this framework, given a sensing matrix respecting the restricted isometry property (RIP), we prove that for any sparse signal the quantized projected back-projection (QPBP) algorithm achieves a reconstruction error decaying like O(m-1/2)when the number of measurements m increases. Simulations highlight the practicality of the developed scheme for different sensing scenarios, including random partial Fourier sensing.
The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly b
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
One-bit radar, performing signal sampling and quantization by a one-bit ADC, is a promising technology for many civilian applications due to its low-cost and low-power consumptions. In this paper, problems encountered by one-bit LFMCW radar are studi
1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate mess
We consider the problem of sparse signal reconstruction from noisy one-bit compressed measurements when the receiver has access to side-information (SI). We assume that compressed measurements are corrupted by additive white Gaussian noise before qua