ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering room-temperature multiferroicity in Bi and Fe codoped BaTiO3

162   0   0.0 ( 0 )
 نشر من قبل Debraj Choudhury
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fe doping into BaTiO3, stabilizes the paraelectric hexagonal phase in place of the ferroelectric tetragonal one [P. Pal et al. Phys. Rev. B, 101, 064409 (2020)]. We show that simultaneous doping of Bi along with Fe into BaTiO3 effectively enhances the magnetoelectric (ME) multiferroic response (both ferromagnetism and ferroelectricity) at room-temperature, through careful tuning of Fe valency along with the controlled-recovery of ferroelectric-tetragonal phase. We also report systematic increase in large dielectric constant values as well as reduction in loss tangent values with relatively moderate temperature variation of dielectric constant around room-temperature with increasing Bi doping content in Ba1-xBixTi0.9Fe0.1O3 (0<x<0.1), which makes the higher Bi-Fe codoped sample (x=0.08) promising for the use as room-temperature high-k dielectric material. Interestingly, x=0.08 (Bi-Fe codoped) sample is not only found to be ferroelectrically (~20 times) and ferromagnetically (~6 times) stronger than x=0 (only Fe-doped) at room temperature, but also observed to be better insulating (larger bandgap) with indirect signatures of larger ME coupling as indicated from anomalous reduction of magnetic coercive field with decreasing temperature. Thus, room-temperature ME multiferroicity has been engineered in Bi and Fe codoped BTO (BaTiO3) compounds.



قيم البحث

اقرأ أيضاً

Simultaneous co-existence of room-temperature(T) ferromagnetism and ferroelectricity in Fe doped BaTiO$_3$ (BTO) is intriguing, as such Fe doping into tetragonal BTO, a room-T ferroelectric (FE), results in the stabilization of its hexagonal polymorp h which is FE only below $sim$80K. Here, we investigate its origin and show that Fe-doped BTO has a mixed-phase room-temperature multiferroicity, where the ferromagnetism comes from the majority hexagonal phase and a minority tetragonal phase gives rise to the observed weak ferroelectricity. In order to achieve majority tetragonal phase (responsible for room-T ferroelectricity) in Fe-doped BTO, we investigate the role of different parameters which primarily control the PE hexagonal phase stability over the FE tetragonal one and identify three major factors namely, the effect of ionic size, Jahn-Teller (J-T) distortions and oxygen vacancies (OVs), to be primarily responsible. The effect of ionic size which can be qualitatively represented using the Goldschmidts tolerance (GT) factor seems to be the major dictating factor for the hexagonal phase stability. The understanding of these factors not only enables us to control them but also, achieve suitable co-doped BTO compound with enhanced room-T multiferroic properties.
Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it was already shown that ferroelectric domain walls can be the source of such artificial coupling. We s how here that low temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this losses alteration has no counterpart on the real part of the dielectric permittivity confirms that no interface is to be involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe related centers was confirmed by ESR spectroscopy showing maximum intensity at ca Tsim40 K.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert ies. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
We argue that the centrosymmetric $C2/c$ symmetry in BiMnO$_3$ is spontaneously broken by antiferromagnetic (AFM) interactions existing in the system. The true symmetry is expected to be $Cc$, which is compatible with the noncollinear magnetic ground state, where the ferromagnetic order along one crystallographic axis coexists with the the hidden AFM order and related to it ferroelectric polarization along two other axes. The $C2/c$ symmetry can be restored by the magnetic field $B sim 35$ Tesla, which switches off the ferroelectric polarization. Our analysis is based on the solution of the low-energy model constructed for the 3d-bands of BiMnO$_3$, where all the parameters have been derived from the first-principles calculations. Test calculations for isostructural BiCrO$_3$ reveal an excellent agreement with experimental data.
Magnetic entropy and adiabatic temperature changes in and above the room-temperature region has been measured for La0.7Sr0.3Mn1-xMxO3 (M = Al, Ti) by means of magnetization and heat capacity measurements in magnetic fields up to 6 T. The magnetocalor ic effect becomes largest at the ferromagnetic ordering temperature Tc that is tuned to ~300 K by the substitution of Al or Ti for Mn. While the substitution of Al for Mn drastically reduces the entropy change, it extends considerably the working temperature span and improves the relative cooling power. The magnetocaloric effect seems to be only lightly affected by Ti substitution. Although manganites have been considered potential for magnetic refrigerants, the magnetocaloric effect in these materials is limited due to the existence of short-range ferromagnetic correlations above Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا