ﻻ يوجد ملخص باللغة العربية
The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the only sources that combine the challenges of strong-field complexity with that of long-lived signals. Such signals are found and characterized by comparing them against a large number of accurate waveform templates during data analysis, but the rapid generation of such templates is hindered by computing the $sim10^3$-$10^5$ harmonic modes in a fully relativistic waveform. We use order-reduction and deep-learning techniques to derive a global fit for these modes, and implement it in a complete waveform framework with hardware acceleration. Our high-fidelity waveforms can be generated in under $1,mathrm{s}$, and achieve a mismatch of $lesssim 5times 10^{-4}$ against reference waveforms that take $gtrsim 10^4$ times longer. This marks the first time that analysis-length waveforms with full harmonic content can be produced on timescales useful for direct implementation in LISA analysis algorithms.
Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to det
The planned Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from ~100 extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. The long duration and large parameter spac
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation
Extreme mass-ratio inspirals~(EMRIs) detectable by the Laser Inteferometric Space Antenna~(LISA) are unique probes of astrophysics and fundamental physics. Parameter estimation for these sources is challenging, especially because the waveforms are lo
In this paper we describe a Bayesian inference framework for analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) al