ﻻ يوجد ملخص باللغة العربية
The screen content images (SCIs) usually comprise various content types with sharp edges, in which the artifacts or distortions can be well sensed by the vanilla structure similarity measurement in a full reference manner. Nonetheless, almost all of the current SOTA structure similarity metrics are locally formulated in a single-level manner, while the true human visual system (HVS) follows the multi-level manner, and such mismatch could eventually prevent these metrics from achieving trustworthy quality assessment. To ameliorate, this paper advocates a novel solution to measure structure similarity globally from the perspective of sparse representation. To perform multi-level quality assessment in accordance with the real HVS, the above-mentioned global metric will be integrated with the conventional local ones by resorting to the newly devised selective deep fusion network. To validate its efficacy and effectiveness, we have compared our method with 12 SOTA methods over two widely-used large-scale public SCI datasets, and the quantitative results indicate that our method yields significantly higher consistency with subjective quality score than the currently leading works. Both the source code and data are also publicly available to gain widespread acceptance and facilitate new advancement and its validation.
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behavior
Inspired by the free-energy brain theory, which implies that human visual system (HVS) tends to reduce uncertainty and restore perceptual details upon seeing a distorted image, we propose restorative adversarial net (RAN), a GAN-based model for no-re
In most practical situations, the compression or transmission of images and videos creates distortions that will eventually be perceived by a human observer. Vice versa, image and video restoration techniques, such as inpainting or denoising, aim to
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA metho
The process of rendering high dynamic range (HDR) images to be viewed on conventional displays is called tone mapping. However, tone mapping introduces distortions in the final image which may lead to visual displeasure. To quantify these distortions