ﻻ يوجد ملخص باللغة العربية
Inspired by the free-energy brain theory, which implies that human visual system (HVS) tends to reduce uncertainty and restore perceptual details upon seeing a distorted image, we propose restorative adversarial net (RAN), a GAN-based model for no-reference image quality assessment (NR-IQA). RAN, which mimics the process of HVS, consists of three components: a restorator, a discriminator and an evaluator. The restorator restores and reconstructs input distorted image patches, while the discriminator distinguishes the reconstructed patches from the pristine distortion-free patches. After restoration, we observe that the perceptual distance between the restored and the distorted patches is monotonic with respect to the distortion level. We further define Gain of Restoration (GoR) based on this phenomenon. The evaluator predicts perceptual score by extracting feature representations from the distorted and restored patches to measure GoR. Eventually, the quality score of an input image is estimated by weighted sum of the patch scores. Experimental results on Waterloo Exploration, LIVE and TID2013 show the effectiveness and generalization ability of RAN compared to the state-of-the-art NR-IQA models.
The process of rendering high dynamic range (HDR) images to be viewed on conventional displays is called tone mapping. However, tone mapping introduces distortions in the final image which may lead to visual displeasure. To quantify these distortions
In this paper, we propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination. The proposed quality assessment framework is grounded on the prior models of natural image statistical behavior
No-reference image quality assessment (NR-IQA) has received increasing attention in the IQA community since reference image is not always available. Real-world images generally suffer from various types of distortion. Unfortunately, existing NR-IQA m
To improve the viewers Quality of Experience (QoE) and optimize computer graphics applications, 3D model quality assessment (3D-QA) has become an important task in the multimedia area. Point cloud and mesh are the two most widely used digital represe
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations, it is a complex and unsolved problem due to the absence of the pristine reference image. In this paper,