ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement between two disjoint universes

71   0   0.0 ( 0 )
 نشر من قبل Arjun Kar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the replica method to compute the entanglement entropy of a universe without gravity entangled in a thermofield-double-like state with a disjoint gravitating universe. Including wormholes between replicas of the latter gives an entropy functional which includes an island on the gravitating universe. We solve the back-reaction equations when the cosmological constant is negative to show that this island coincides with a causal shadow region that is created by the entanglement in the gravitating geometry. At high entanglement temperatures, the island contribution to the entropy functional leads to a bound on entanglement entropy, analogous to the Page behavior of evaporating black holes. We demonstrate that the entanglement wedge of the non-gravitating universe grows with the entanglement temperature until, eventually, the gravitating universe can be entirely reconstructed from the non-gravitating one.

قيم البحث

اقرأ أيضاً

We study two disjoint universes in an entangled pure state. When only one universe contains gravity, the path integral for the $n^{text{th}}$ Renyi entropy includes a wormhole between the $n$ copies of the gravitating universe, leading to a standard island formula for entanglement entropy consistent with unitarity of quantum information. When both universes contain gravity, gravitational corrections to this configuration lead to a violation of unitarity. However, the path integral is now dominated by a novel wormhole with $2n$ boundaries connecting replica copies of both universes. The analytic continuation of this contribution involves a quotient by $mathbb{Z}_n$ replica symmetry, giving a cylinder connecting the two universes. When entanglement is large, this configuration has an effective description as a swap wormhole, a geometry in which the boundaries of the two universes are glued together by a swaperator. This description allows precise computation of a generalized entropy-like formula for entanglement entropy. The quantum extremal surface computing the entropy lives on the Lorentzian continuation of the cylinder/swap wormhole, which has a connected Cauchy slice stretching between the universes -- a realization of the ER=EPR idea. The new wormhole restores unitarity of quantum information.
73 - Jun Tsujimura 2021
The Ryu-Takayanagi conjecture contradicts $1+1$-dimensional CFT if we apply it to two far disjoint intervals because it predicts the product state. Instead of the conventional conjecture, we propose a holographic entanglement entropy formula that the entanglement entropy of two disjoint intervals is described by the appropriate sum of the area of signed extremal curves. We confirm that the resulting holographic entanglement entropy is consistent with the entanglement entropy for the specific two disjoint intervals evaluated in the large $c$ limit CFT.
Two-dimensional scalar field theories with spontaneous symmetry breaking subject to the action of Jackiw-Teitelboim gravity are studied. Solutions for the $phi^4$ and sine-Gordon self-gravitating kinks are presented, both for general gravitational co upling and in the perturbative regime. The analysis is extended to deal with a hierarchy of kinks related to transparent P{o}schl-Teller potentials
We apply the recently proposed transfer matrix formalism to 2-dimensional quantum gravity coupled to $(2, 2k-1)$ minimal models. We find that the propagation of a parent universe in geodesic (Euclidean) time is accompanied by continual emission of ba by universes and derive a distribution function describing their sizes. The $kto infty~ (cto -infty)$ limit is generally thought to correspond to classical geometry, and we indeed find a classical peak in the universe distribution function. However, we also observe dramatic quantum effects associated with baby universes at finite length scales.
We reconsider the moments of the reduced density matrix of two disjoint intervals and of its partial transpose with respect to one interval for critical free fermionic lattice models. It is known that these matrices are sums of either two or four Gau ssian matrices and hence their moments can be reconstructed as computable sums of products of Gaussian operators. We find that, in the scaling limit, each term in these sums is in one-to-one correspondence with the partition function of the corresponding conformal field theory on the underlying Riemann surface with a given spin structure. The analytical findings have been checked against numerical results for the Ising chain and for the XX spin chain at the critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا