ترغب بنشر مسار تعليمي؟ اضغط هنا

On self-gravitating kinks in two-dimensional pseudo-riemannian universes

300   0   0.0 ( 0 )
 نشر من قبل Wifredo Garc\\'ia Fuertes
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional scalar field theories with spontaneous symmetry breaking subject to the action of Jackiw-Teitelboim gravity are studied. Solutions for the $phi^4$ and sine-Gordon self-gravitating kinks are presented, both for general gravitational coupling and in the perturbative regime. The analysis is extended to deal with a hierarchy of kinks related to transparent P{o}schl-Teller potentials



قيم البحث

اقرأ أيضاً

We study two disjoint universes in an entangled pure state. When only one universe contains gravity, the path integral for the $n^{text{th}}$ Renyi entropy includes a wormhole between the $n$ copies of the gravitating universe, leading to a standard island formula for entanglement entropy consistent with unitarity of quantum information. When both universes contain gravity, gravitational corrections to this configuration lead to a violation of unitarity. However, the path integral is now dominated by a novel wormhole with $2n$ boundaries connecting replica copies of both universes. The analytic continuation of this contribution involves a quotient by $mathbb{Z}_n$ replica symmetry, giving a cylinder connecting the two universes. When entanglement is large, this configuration has an effective description as a swap wormhole, a geometry in which the boundaries of the two universes are glued together by a swaperator. This description allows precise computation of a generalized entropy-like formula for entanglement entropy. The quantum extremal surface computing the entropy lives on the Lorentzian continuation of the cylinder/swap wormhole, which has a connected Cauchy slice stretching between the universes -- a realization of the ER=EPR idea. The new wormhole restores unitarity of quantum information.
In this work, kinks with non-canonical kinetic energy terms are studied in a type of two-dimensional dilaton gravity model. The linear stability issue is generally discussed for arbitrary static solutions with the aid of supersymmetric quantum mechan ics theory, and the stability criteria are obtained. As an explicit example, a model with cuscuton term is studied. After rewriting the equations of motion into simpler first-order formalism and choosing a polynomial superpotential, an exact self-gravitating kink solution is obtained. The impacts of the cuscuton term are discussed.
We apply the recently proposed transfer matrix formalism to 2-dimensional quantum gravity coupled to $(2, 2k-1)$ minimal models. We find that the propagation of a parent universe in geodesic (Euclidean) time is accompanied by continual emission of ba by universes and derive a distribution function describing their sizes. The $kto infty~ (cto -infty)$ limit is generally thought to correspond to classical geometry, and we indeed find a classical peak in the universe distribution function. However, we also observe dramatic quantum effects associated with baby universes at finite length scales.
We use the replica method to compute the entanglement entropy of a universe without gravity entangled in a thermofield-double-like state with a disjoint gravitating universe. Including wormholes between replicas of the latter gives an entropy functio nal which includes an island on the gravitating universe. We solve the back-reaction equations when the cosmological constant is negative to show that this island coincides with a causal shadow region that is created by the entanglement in the gravitating geometry. At high entanglement temperatures, the island contribution to the entropy functional leads to a bound on entanglement entropy, analogous to the Page behavior of evaporating black holes. We demonstrate that the entanglement wedge of the non-gravitating universe grows with the entanglement temperature until, eventually, the gravitating universe can be entirely reconstructed from the non-gravitating one.
We have investigated the head-on collision of a two-kink and a two-antikink pair that arises as a generalization of the $phi^4$ model. We have evolved numerically the Klein-Gordon equation with a new spectral algorithm whose accuracy and convergence were attested by the numerical tests. As a general result, the two-kink pair is annihilated radiating away most of the scalar field. It is possible the production of oscillons-like configurations after the collision that bounce and coalesce to form a small amplitude oscillon at the origin. The new feature is the formation of a sequence of quasi-stationary structures that we have identified as lump-like solutions of non-topological nature. The amount of time these structures survives depends on the fine-tuning of the impact velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا