ﻻ يوجد ملخص باللغة العربية
The orientation of water molecules is the key factor for the fast transport of water in small nanotubes. It has been accepted that the bidirectional water burst in short nanotubes can be transformed into unidirectional transport when the orientation of water molecules is maintained in long nanotubes under the external field. In this work, based on molecular dynamics simulations and first-principles calculations, we showed without external field, it only needs 21 water molecules to maintain the unidirectional single file water intrinsically in carbon nanotube at seconds. Detailed analysis indicates that the surprising result comes from the step by step process for the flip of water chain, which is different with the perceived concerted mechanism. Considering the thickness of cell membrane (normally 5-10 nm) is larger than the length threshold of the unidirectional water wire, this study suggests it may not need the external field to maintain the unidirectional flow in the water channel at the macroscopic timescale.
A method to calculate the bound states of three-atoms without resorting to an explicit partial wave decomposition is presented. The differential form of the Faddeev equations in the total angular momentum representation is used for this purpose. The
During compression of a water dimer calculated with high-precision first-principles methods, the trends of H-bond and O-H bond lengths show quantum effect of the electronic structure. We found that the H-bond length keeps decreasing, while the O-H bo
The electronic properties of squashed arm-chair carbon nanotubes are modeled using constraint free density functional tight binding molecular dynamics simulations. Independent from CNT diameter, squashing path can be divided into {it three} regimes.
The many-body polarization energy is the major source of non-additivity in strongly polar systems such as water. This non-additivity is often considerable and must be included, if only in an average manner, to correctly describe the physical properti
We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided b