ﻻ يوجد ملخص باللغة العربية
A method to calculate the bound states of three-atoms without resorting to an explicit partial wave decomposition is presented. The differential form of the Faddeev equations in the total angular momentum representation is used for this purpose. The method utilizes Cartesian coordinates combined with the tensor-trick preconditioning for large linear systems and Arnoldis algorithm for eigenanalysis. As an example, we consider the He$_3$ system in which the interatomic force has a very strong repulsive core that makes the three-body calculations with standard methods tedious and cumbersome requiring the inclusion of a large number of partial waves. The results obtained compare favorably with other results in the field.
The Faddeev equations for the three body bound state are solved directly as three dimensional integral equation without employing partial wave decomposition. The numerical stability of the algorithm is demonstrated. The three body binding energy is c
The BOUND program calculates the bound states of a complex formed from two interacting particles using coupled-channel methods. It is particularly suitable for the bound states of atom-molecule and molecule-molecule Van der Waals complexes and for th
The orientation of water molecules is the key factor for the fast transport of water in small nanotubes. It has been accepted that the bidirectional water burst in short nanotubes can be transformed into unidirectional transport when the orientation
Supersonic beams are a prevalent source of cold molecules utilized in the study of chemical reactions, atom interferometry, gas-surface interactions, precision spectroscopy, molecular cooling and more. The triumph of this method emanates from the hig
The main formalisms of partial level densities (PLD) used in preequilibrium nuclear reaction models, based on the equidistant spacing model (ESM), are considered. A collection of FORTRAN77 functions for PLD calculation by using 14 formalisms for the