ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic error bounds for kernel-based learning techniques under bounded noise

83   0   0.0 ( 0 )
 نشر من قبل Emilio Maddalena
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of reconstructing a function from a finite set of noise-corrupted samples. Two kernel algorithms are analyzed, namely kernel ridge regression and $varepsilon$-support vector regression. By assuming the ground-truth function belongs to the reproducing kernel Hilbert space of the chosen kernel, and the measurement noise affecting the dataset is bounded, we adopt an approximation theory viewpoint to establish textit{deterministic}, finite-sample error bounds for the two models. Finally, we discuss their connection with Gaussian processes and two numerical examples are provided. In establishing our inequalities, we hope to help bring the fields of non-parametric kernel learning and system identification for robust control closer to each other.

قيم البحث

اقرأ أيضاً

The repetitive tracking task for time-varying systems (TVSs) with non-repetitive time-varying parameters, which is also called non-repetitive TVSs, is realized in this paper using iterative learning control (ILC). A machine learning (ML) based nomina l model update mechanism, which utilizes the linear regression technique to update the nominal model at each ILC trial only using the current trial information, is proposed for non-repetitive TVSs in order to enhance the ILC performance. Given that the ML mechanism forces the model uncertainties to remain within the ILC robust tolerance, an ILC update law is proposed to deal with non-repetitive TVSs. How to tune parameters inside ML and ILC algorithms to achieve the desired aggregate performance is also provided. The robustness and reliability of the proposed method are verified by simulations. Comparison with current state-of-the-art demonstrates its superior control performance in terms of controlling precision. This paper broadens ILC applications from time-invariant systems to non-repetitive TVSs, adopts ML regression technique to estimate non-repetitive time-varying parameters between two ILC trials and proposes a detailed parameter tuning mechanism to achieve desired performance, which are the main contributions.
224 - Qingrui Zhang , Hao Dong , Wei Pan 2020
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional mode l-based control methods can hardly be applied. Compared with model-based control in control theory, deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics. However, to directly apply DRL to decentralized multi-agent control is challenging, as interactions among agents make the learning environment non-stationary. More importantly, the existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system from a control-theoretic perspective, so the learned control polices are highly possible to generate abnormal or dangerous behaviors in real applications. Hence, without stability guarantee, the application of the existing MARL algorithms to real multi-agent systems is of great concern, e.g., UAVs, robots, and power systems, etc. In this paper, we aim to propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee. The new MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is proposed under the well-known framework of centralized-training-with-decentralized-execution. The closed-loop stability is guaranteed by the introduction of a stability constraint during the policy improvement in our MASAC algorithm. The stability constraint is designed based on Lyapunovs method in control theory. To demonstrate the effectiveness, we present a multi-agent navigation example to show the efficiency of the proposed MASAC algorithm.
Air conditioning (AC) accounts for a critical portion of the global energy consumption. To improve its energy performance, it is important to fairly benchmark its energy performance and provide the evaluation feedback to users. However, this task has not been well tackled in the residential sector. In this paper, we propose a data-driven approach to fairly benchmark the AC energy performance of residential rooms. First, regression model is built for each benchmarked room so that its power consumption can be predicted given different weather conditions and AC settings. Then, all the rooms are clustered based on their areas and usual AC temperature set points. Lastly, within each cluster, rooms are benchmarked based on their predicted power consumption under uniform weather conditions and AC settings. A real-world case study was conducted with data collected from 44 residential rooms. Results show that the constructed regression models have an average prediction accuracy of 85.1% in cross-validation tests, and support vector regression with Gaussian kernel is the overall most suitable model structure for building the regression model. In the clustering step, 44 rooms are successfully clustered into seven clusters. By comparing the benchmarking scores generated by the proposed approach with two sets of scores computed from historical power consumption data, we demonstrate that the proposed approach is able to eliminate the influences of room areas, weather conditions, and AC settings on the benchmarking results. Therefore, the proposed benchmarking approach is valid and fair. As a by-product, the approach is also shown to be useful to investigate how room areas, weather conditions, and AC settings affect the AC power consumption of rooms in real life.
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.
Microgrid (MG) energy management is an important part of MG operation. Various entities are generally involved in the energy management of an MG, e.g., energy storage system (ESS), renewable energy resources (RER) and the load of users, and it is cru cial to coordinate these entities. Considering the significant potential of machine learning techniques, this paper proposes a correlated deep Q-learning (CDQN) based technique for the MG energy management. Each electrical entity is modeled as an agent which has a neural network to predict its own Q-values, after which the correlated Q-equilibrium is used to coordinate the operation among agents. In this paper, the Long Short Term Memory networks (LSTM) based deep Q-learning algorithm is introduced and the correlated equilibrium is proposed to coordinate agents. The simulation result shows 40.9% and 9.62% higher profit for ESS agent and photovoltaic (PV) agent, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا