ﻻ يوجد ملخص باللغة العربية
In his PhD thesis, Einstein derived an explicit first-order expansion for the effective viscosity of a Stokes fluid with a random suspension of small rigid particles at low density. This formal derivation is based on two assumptions: (i) there is a scale separation between the size of particles and the observation scale, and (ii) particles do not interact with one another at first order. While the first assumption was addressed in a companion work in terms of homogenization theory, the second one is reputedly more subtle due to the long-range character of hydrodynamic interactions. In the present contribution, we provide a rigorous justification of Einsteins first-order expansion at low density in the most general setting. This is pursued to higher orders in form of a cluster expansion, where the summation of hydrodynamic interactions crucially requires suitable renormalizations, and we justify in particular a celebrated result by Batchelor and Green on the next-order correction. In addition, we address the summability of the cluster expansion in two specific settings (random deletion and geometric dilation of a fixed point set). Our approach relies on an intricate combination of combinatorial arguments, PDE analysis, and probability theory.
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We sho
In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solu
We consider the Steklov zeta function $zeta$ $Omega$ of a smooth bounded simply connected planar domain $Omega$ $subset$ R 2 of perimeter 2$pi$. We provide a first variation formula for $zeta$ $Omega$ under a smooth deformation of the domain. On the
In this paper we deal with two dimensional cubic Dirac equations appearing as effective model in gapped honeycomb structures. We give a formal derivation starting from cubic Schrodinger equations and prove the existence of standing waves bifurcating from one band-edge of the linear spectrum.
We prove a Koszul formula for the Levi-Civita connection for any pseudo-Riemannian bilinear metric on a class of centered bimodule of noncommutative one-forms. As an application to the Koszul formula, we show that our Levi-Civita connection is a bimo