ﻻ يوجد ملخص باللغة العربية
We extend balloon and sample-smoothing estimators, two types of variable-bandwidth kernel density estimators, by a shift parameter and derive their asymptotic properties. Our approach facilitates the unified study of a wide range of density estimators which are subsumed under these two general classes of kernel density estimators. We demonstrate our method by deriving the asymptotic bias, variance, and mean (integrated) squared error of density estimators with gamma, log-normal, Birnbaum-Saunders, inverse Gaussian and reciprocal inverse Gaussian kernels. We propose two new density estimators for positive random variables that yield properly-normalised density estimates. Plugin expressions for bandwidth estimation are provided to facilitate easy exploratory data analysis.
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many random
The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed t
The strata-specific treatment effect or so-called blip for a randomly drawn strata of confounders defines a random variable and a corresponding cumulative distribution function. However, the CDF is not pathwise differentiable, necessitating a kernel