ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of treatment effects under endogeneous heteroskedasticity

95   0   0.0 ( 0 )
 نشر من قبل Haiqing Xu
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The empirical literature on program evaluation limits its scope almost exclusively to models where treatment effects are homogenous for observationally identical individuals. This paper considers a treatment effect model in which treatment effects may be heterogeneous, even among observationally identical individuals. Specifically, extending the classical instrumental variables (IV) model with an endogenous binary treatment and a binary instrument, we allow the heteroskedasticity of the error disturbance to also depend upon the treatment variable so that treatment has both mean and variance effects on the outcome. In this endogenous heteroskedasticity IV (EHIV) model with heterogeneous individual treatment effects, the standard IV estimator can be inconsistent and lead to incorrect inference. After showing identification of the mean and variance treatment effects in a nonparametric version of the EHIV model, we provide closed-form estimators for the linear EHIV for the mean and variance treatment effects and the individual treatment effects (ITE). Asymptotic properties of the estimators are provided. A Monte Carlo simulation investigates the performance of the proposed approach, and an empirical application regarding the effects of fertility on female labor supply is considered.



قيم البحث

اقرأ أيضاً

108 - Ruoqi Yu , Shulei Wang 2020
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based $U$-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely rand om. This setting is of particular interest in recent experimentation in tech companies. We propose using parametric models for the treatment effects, as opposed to parametric models for the full outcome distributions. This leads to semiparametric models for the outcome distributions. We derive the semiparametric efficiency bound for this setting, and propose efficient estimators. In the case with a constant treatment effect one of the proposed estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to (minus) the second derivative of the log of the density of the potential outcomes. Our analysis also results in an extension of Hubers model and trimmed mean to include asymmetry and a simplified condition on linear combinations of order statistics, which may be of independent interest.
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifia ble under mild conditions. In this paper, we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges for causal estimation with a binary outcome, and show that surprisingly, it can be more difficult than the case with a continuous outcome. We propose novel modeling and estimating procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness or efficiency. Our approach is illustrated via simulation studies and a real data analysis.
Estimation of heterogeneous treatment effects is an essential component of precision medicine. Model and algorithm-based methods have been developed within the causal inference framework to achieve valid estimation and inference. Existing methods suc h as the A-learner, R-learner, modified covariates method (with and without efficiency augmentation), inverse propensity score weighting, and augmented inverse propensity score weighting have been proposed mostly under the square error loss function. The performance of these methods in the presence of data irregularity and high dimensionality, such as that encountered in electronic health record (EHR) data analysis, has been less studied. In this research, we describe a general formulation that unifies many of the existing learners through a common score function. The new formulation allows the incorporation of least absolute deviation (LAD) regression and dimension reduction techniques to counter the challenges in EHR data analysis. We show that under a set of mild regularity conditions, the resultant estimator has an asymptotic normal distribution. Within this framework, we proposed two specific estimators for EHR analysis based on weighted LAD with penalties for sparsity and smoothness simultaneously. Our simulation studies show that the proposed methods are more robust to outliers under various circumstances. We use these methods to assess the blood pressure-lowering effects of two commonly used antihypertensive therapies.
458 - Yichong Zhang , Xin Zheng 2018
In this paper, we study the estimation and inference of the quantile treatment effect under covariate-adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile regression. For the two estimators, we derive their asymptotic distributions uniformly over a compact set of quantile indexes, and show that, when the treatment assignment rule does not achieve strong balance, the inverse propensity score weighted estimator has a smaller asymptotic variance than the simple quantile regression estimator. For the inference of method (1), we show that the Wald test using a weighted bootstrap standard error under-rejects. But for method (2), its asymptotic size equals the nominal level. We also show that, for both methods, the asymptotic size of the Wald test using a covariate-adaptive bootstrap standard error equals the nominal level. We illustrate the finite sample performance of the new estimation and inference methods using both simulated and real datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا