ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Adversarial Imitation Learning and its Connections to Adversarial Methods

73   0   0.0 ( 0 )
 نشر من قبل Oleg Arenz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many modern methods for imitation learning and inverse reinforcement learning, such as GAIL or AIRL, are based on an adversarial formulation. These methods apply GANs to match the experts distribution over states and actions with the implicit state-action distribution induced by the agents policy. However, by framing imitation learning as a saddle point problem, adversarial methods can suffer from unstable optimization, and convergence can only be shown for small policy updates. We address these problems by proposing a framework for non-adversarial imitation learning. The resulting algorithms are similar to their adversarial counterparts and, thus, provide insights for adversarial imitation learning methods. Most notably, we show that AIRL is an instance of our non-adversarial formulation, which enables us to greatly simplify its derivations and obtain stronger convergence guarantees. We also show that our non-adversarial formulation can be used to derive novel algorithms by presenting a method for offline imitation learning that is inspired by the recent ValueDice algorithm, but does not rely on small policy updates for convergence. In our simulated robot experiments, our offline method for non-adversarial imitation learning seems to perform best when using many updates for policy and discriminator at each iteration and outperforms behavioral cloning and ValueDice.

قيم البحث

اقرأ أيضاً

We show that a critical vulnerability in adversarial imitation is the tendency of discriminator networks to learn spurious associations between visual features and expert labels. When the discriminator focuses on task-irrelevant features, it does not provide an informative reward signal, leading to poor task performance. We analyze this problem in detail and propose a solution that outperforms standard Generative Adversarial Imitation Learning (GAIL). Our proposed method, Task-Relevant Adversarial Imitation Learning (TRAIL), uses constrained discriminator optimization to learn informative rewards. In comprehensive experiments, we show that TRAIL can solve challenging robotic manipulation tasks from pixels by imitating human operators without access to any task rewards, and clearly outperforms comparable baseline imitation agents, including those trained via behaviour cloning and conventional GAIL.
Reward function specification, which requires considerable human effort and iteration, remains a major impediment for learning behaviors through deep reinforcement learning. In contrast, providing visual demonstrations of desired behaviors often pres ents an easier and more natural way to teach agents. We consider a setting where an agent is provided a fixed dataset of visual demonstrations illustrating how to perform a task, and must learn to solve the task using the provided demonstrations and unsupervised environment interactions. This setting presents a number of challenges including representation learning for visual observations, sample complexity due to high dimensional spaces, and learning instability due to the lack of a fixed reward or learning signal. Towards addressing these challenges, we develop a variational model-based adversarial imitation learning (V-MAIL) algorithm. The model-based approach provides a strong signal for representation learning, enables sample efficiency, and improves the stability of adversarial training by enabling on-policy learning. Through experiments involving several vision-based locomotion and manipulation tasks, we find that V-MAIL learns successful visuomotor policies in a sample-efficient manner, has better stability compared to prior work, and also achieves higher asymptotic performance. We further find that by transferring the learned models, V-MAIL can learn new tasks from visual demonstrations without any additional environment interactions. All results including videos can be found online at url{https://sites.google.com/view/variational-mail}.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew ork. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.
111 - Yiren Lu , Jonathan Tompson 2020
We present the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for learning adaptive policies that can be transferred between environments of varying dynamics, by imitating a small number of demonstrations collected from a single source dom ain. This is an important problem in robotic learning because in real world scenarios 1) reward functions are hard to obtain, 2) learned policies from one domain are difficult to deploy in another due to varying source to target domain statistics, 3) collecting expert demonstrations in multiple environments where the dynamics are known and controlled is often infeasible. We address these constraints by building upon recent advances in adversarial imitation learning; we condition our policy on a learned dynamics embedding and we employ a domain-adversarial loss to learn a dynamics-invariant discriminator. The effectiveness of our method is demonstrated on simulated control tasks with varying environment dynamics and the learned adaptive agent outperforms several recent baselines.
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac h to imitation learning (GAIL) and derive an optimization problem for our formulation, which we call it risk-sensitive GAIL (RS-GAIL). We then derive two differe

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا