ﻻ يوجد ملخص باللغة العربية
We present the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for learning adaptive policies that can be transferred between environments of varying dynamics, by imitating a small number of demonstrations collected from a single source domain. This is an important problem in robotic learning because in real world scenarios 1) reward functions are hard to obtain, 2) learned policies from one domain are difficult to deploy in another due to varying source to target domain statistics, 3) collecting expert demonstrations in multiple environments where the dynamics are known and controlled is often infeasible. We address these constraints by building upon recent advances in adversarial imitation learning; we condition our policy on a learned dynamics embedding and we employ a domain-adversarial loss to learn a dynamics-invariant discriminator. The effectiveness of our method is demonstrated on simulated control tasks with varying environment dynamics and the learned adaptive agent outperforms several recent baselines.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew
We show that a critical vulnerability in adversarial imitation is the tendency of discriminator networks to learn spurious associations between visual features and expert labels. When the discriminator focuses on task-irrelevant features, it does not
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac
Adversarial imitation learning has become a popular framework for imitation in continuous control. Over the years, several variations of its components were proposed to enhance the performance of the learned policies as well as the sample complexity
Adversarial methods for imitation learning have been shown to perform well on various control tasks. However, they require a large number of environment interactions for convergence. In this paper, we propose an end-to-end differentiable adversarial