ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep F-measure Maximization for End-to-End Speech Understanding

111   0   0.0 ( 0 )
 نشر من قبل Leda Sar{\\i}
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Spoken language understanding (SLU) datasets, like many other machine learning datasets, usually suffer from the label imbalance problem. Label imbalance usually causes the learned model to replicate similar biases at the output which raises the issue of unfairness to the minority classes in the dataset. In this work, we approach the fairness problem by maximizing the F-measure instead of accuracy in neural network model training. We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation. We perform experiments on two standard fairness datasets, Adult, and Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset. In all four of these tasks, F-measure maximization results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function. In the two multi-class SLU tasks, the proposed approach significantly improves class coverage, i.e., the number of classes with positive recall.



قيم البحث

اقرأ أيضاً

Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the models ability to generalize to new phrases not heard during training.
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the datas challenging acoustics, variable signal processing and the essentially unrestricted domain of the data. In previou s work, we have shown that the visual channel -- specifically object and scene features -- can help to adapt the acoustic model (AM) and language model (LM) of a recognizer, and we are now expanding this work to end-to-end approaches. In the case of a Connectionist Temporal Classification (CTC)-based approach, we retain the separation of AM and LM, while for a sequence-to-sequence (S2S) approach, both information sources are adapted together, in a single model. This paper also analyzes the behavior of CTC and S2S models on noisy video data (How-To corpus), and compares it to results on the clean Wall Street Journal (WSJ) corpus, providing insight into the robustness of both approaches.
Practitioners often need to build ASR systems for new use cases in a short amount of time, given limited in-domain data. While recently developed end-to-end methods largely simplify the modeling pipelines, they still suffer from the data sparsity iss ue. In this work, we explore a few simple-to-implement techniques for building online ASR systems in an end-to-end fashion, with a small amount of transcribed data in the target domain. These techniques include data augmentation in the target domain, domain adaptation using models previously trained on a large source domain, and knowledge distillation on non-transcribed target domain data, using an adapted bi-directional model as the teacher; they are applicable in real scenarios with different types of resources. Our experiments demonstrate that each technique is independently useful in the improvement of the online ASR performance in the target domain.
111 - Qiujia Li , Yu Zhang , Bo Li 2021
End-to-end models with auto-regressive decoders have shown impressive results for automatic speech recognition (ASR). These models formulate the sequence-level probability as a product of the conditional probabilities of all individual tokens given t heir histories. However, the performance of locally normalised models can be sub-optimal because of factors such as exposure bias. Consequently, the model distribution differs from the underlying data distribution. In this paper, the residual energy-based model (R-EBM) is proposed to complement the auto-regressive ASR model to close the gap between the two distributions. Meanwhile, R-EBMs can also be regarded as utterance-level confidence estimators, which may benefit many downstream tasks. Experiments on a 100hr LibriSpeech dataset show that R-EBMs can reduce the word error rates (WERs) by 8.2%/6.7% while improving areas under precision-recall curves of confidence scores by 12.6%/28.4% on test-clean/test-other sets. Furthermore, on a state-of-the-art model using self-supervised learning (wav2vec 2.0), R-EBMs still significantly improves both the WER and confidence estimation performance.
End-to-end automatic speech recognition (ASR) models, including both attention-based models and the recurrent neural network transducer (RNN-T), have shown superior performance compared to conventional systems. However, previous studies have focused primarily on short utterances that typically last for just a few seconds or, at most, a few tens of seconds. Whether such architectures are practical on long utterances that last from minutes to hours remains an open question. In this paper, we both investigate and improve the performance of end-to-end models on long-form transcription. We first present an empirical comparison of different end-to-end models on a real world long-form task and demonstrate that the RNN-T model is much more robust than attention-based systems in this regime. We next explore two improvements to attention-based systems that significantly improve its performance: restricting the attention to be monotonic, and applying a novel decoding algorithm that breaks long utterances into shorter overlapping segments. Combining these two improvements, we show that attention-based end-to-end models can be very competitive to RNN-T on long-form speech recognition.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا