ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Network Model for Strong Topological Insulator Transitions

69   0   0.0 ( 0 )
 نشر من قبل Jun Ho Son
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a three-dimensional (3D), time-reversal symmetric generalization of the Chalker-Coddington network model for the integer quantum Hall transition. The novel feature of our network model is that in addition to a weak topological insulator phase already accommodated by the network model framework in the pre-existing literature, it hosts strong topological insulator phases as well. We unambiguously demonstrate that strong topological insulator phases emerge as intermediate phases between a trivial insulator phase and a weak topological phase. Additionally, we found a non-local transformation that relates a trivial insulator phase and a weak topological phase in our network model. Remarkably, strong topological phases are mapped to themselves under this transformation. We show that upon adding sufficiently strong disorder the strong topological insulator phases undergo phase transitions into a metallic phase. We numerically determine the critical exponent of the insulator-metal transition. Our network model explicitly shows how a semi-classical percolation picture of topological phase transitions in 2D can be generalized to 3D and opens up a new venue for studying 3D topological phase transitions.



قيم البحث

اقرأ أيضاً

Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are i nstead characterized by a chiral Floquet (CF) winding number. This begs the question: How can a model without Chern number describe IQH systems? We resolve this apparent paradox by showing that non-zero Chern number is recovered from the network model via the energy dependence of network model scattering parameters. This relationship shows that, despite their topologically distinct origins, IQH and CF topology-changing transitions share identical universal scaling properties.
We study the dynamical melting of hot one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By ac counting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.
We adopt a geometric perspective on Fock space to provide two complementary insights into the eigenstates in many-body-localized fermionic systems. On the one hand, individual many-body-localized eigenstates are well approximated by a Slater determin ant of single-particle orbitals. On the other hand, the orbitals of different eigenstates in a given system display a varying, and generally imperfect, degree of compatibility, as we quantify by a measure based on the projectors onto the corresponding single-particle subspaces. We study this incompatibility between states of fixed and differing particle number, as well as inside and outside the many-body-localized regime. This gives detailed insights into the emergence and strongly correlated nature of quasiparticle-like excitations in many-body localized systems, revealing intricate correlations between states of different particle number down to the level of individual realizations.
The effect of surface disorder on electronic systems is particularly interesting for topological phases with surface and edge states. Using exact diagonalization, it has been demonstrated that the surface states of a 3D topological insulator survive strong surface disorder, and simply get pushed to a clean part of the bulk. Here we explore a new method which analytically eliminates the clean bulk, and reduces a $D$-dimensional problem to a Hamiltonian-diagonalization problem within the $(D-1)$-dimensional disordered surface. This dramatic reduction in complexity allows the analysis of significantly bigger systems than is possible with exact diagonalization. We use our method to analyze a 2D topological spin-Hall insulator with non-magnetic and magnetic edge impurities, and we calculate the probability density (or local density of states) of the zero-energy eigenstates as a function of edge-parallel momentum and layer index. Our analysis reveals that the system size needed to reach behavior in the thermodynamic limit increases with disorder. We also compute the edge conductance as a function of disorder strength, and chart a lower bound for the length scale marking the crossover to the thermodynamic limit.
The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as belonging to one of eight (real) symmetry classes depending on the value of $kmod 8$. We show that, depending on the symmetry class, the system may support exact many-body zero modes with the symmetries also dictating whether these may have a nonzero contribution to Majorana fermions, i.e., single-particle weight. These zero modes appear in all but two of the symmetry classes. When present, they leave clear signatures in physical observables that go beyond the threefold (Wigner-Dyson) possibilities for level spacing statistics studied earlier. Signatures we discover include a zero-energy peak or hole in the single-particle spectral function, depending on whether symmetries allow or forbid zero modes to have single-particle weight. The zero modes are also shown to influence the many-body dynamics, where signatures include a nonzero long-time limit for the out-of-time-order correlation function. Furthermore, we show that the extension of the four-body SYK model by quadratic terms can be interpreted as realizing the remaining two complex symmetry classes; we thus demonstrate how the entire tenfold Altland-Zirnbauer classification may emerge in the SYK model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا