ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Hall network models as Floquet topological insulators

81   0   0.0 ( 0 )
 نشر من قبل Andrew Potter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are instead characterized by a chiral Floquet (CF) winding number. This begs the question: How can a model without Chern number describe IQH systems? We resolve this apparent paradox by showing that non-zero Chern number is recovered from the network model via the energy dependence of network model scattering parameters. This relationship shows that, despite their topologically distinct origins, IQH and CF topology-changing transitions share identical universal scaling properties.



قيم البحث

اقرأ أيضاً

Recent high-precision results for the critical exponent of the localization length at the integer quantum Hall (IQH) transition differ considerably between experimental ($ u_text{exp} approx 2.38$) and numerical ($ u_text{CC} approx 2.6$) values obta ined in simulations of the Chalker-Coddington (CC) network model. We revisit the arguments leading to the CC model and consider a more general network with geometric (structural) disorder. Numerical simulations of this new model lead to the value $ u approx 2.37$ in very close agreement with experiments. We argue that in a continuum limit the geometrically disordered model maps to the free Dirac fermion coupled to various random potentials (similar to the CC model) but also to quenched two-dimensional quantum gravity. This explains the possible reason for the considerable difference between critical exponents for the CC model and the geometrically disordered model and may shed more light on the analytical theory of the IQH transition. We extend our results to network models in other symmetry classes.
68 - Jun Ho Son , S. Raghu 2020
We construct a three-dimensional (3D), time-reversal symmetric generalization of the Chalker-Coddington network model for the integer quantum Hall transition. The novel feature of our network model is that in addition to a weak topological insulator phase already accommodated by the network model framework in the pre-existing literature, it hosts strong topological insulator phases as well. We unambiguously demonstrate that strong topological insulator phases emerge as intermediate phases between a trivial insulator phase and a weak topological phase. Additionally, we found a non-local transformation that relates a trivial insulator phase and a weak topological phase in our network model. Remarkably, strong topological phases are mapped to themselves under this transformation. We show that upon adding sufficiently strong disorder the strong topological insulator phases undergo phase transitions into a metallic phase. We numerically determine the critical exponent of the insulator-metal transition. Our network model explicitly shows how a semi-classical percolation picture of topological phase transitions in 2D can be generalized to 3D and opens up a new venue for studying 3D topological phase transitions.
The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and t he essential role of disorder induced localization are reminiscent of the integer quantum Hall (IQH) effect. At the same time, chirality in the AFAI is introduced via an orchestrated driving protocol, there is no magnetic field, no energy conservation, and no (Landau level) band structure. In this paper we show that in spite of these differences the AFAI topological phase transition is in the IQH universality class. We do so by mapping the system onto an effective theory describing phase coherent transport in the system at large length scales. Unlike with other disordered systems, the form of this theory is almost fully determined by symmetry and topological consistency criteria, and can even be guessed without calculation. (However, we back this expectation by a first principle derivation.) Its equivalence to the Pruisken theory of the IQH demonstrates the above equivalence. At the same time it makes predictions on the emergent quantization of transport coefficients, and the delocalization of bulk states at quantum criticality which we test against numerical simulations.
The notion of Thouless energy plays a central role in the theory of Anderson localization. We investigate the scaling of Thouless energy across the many-body localization (MBL) transition in a Floquet model. We use a combination of methods that are r eliable on the ergodic side of the transition (e.g., spectral form factor) and methods that work on the MBL side (e.g. typical matrix elements of local operators) to obtain a complete picture of the Thouless energy behavior across the transition. On the ergodic side, the Thouless energy tends to a value independent of system size, while at the transition it becomes comparable to the level spacing. Different probes yield consistent estimates of the Thouless energy in their overlapping regime of applicability, giving the location of the transition point nearly free of finite-size drift. This work establishes a connection between different definitions of Thouless energy in a many-body setting, and yields new insights into the MBL transition in Floquet systems.
292 - W. Zhu , Q. W. Shi , J. G. Hou 2010
The puzzle of recently observed insulating phase of graphene at filling factor $ u=0$ in high magnetic field quantum Hall (QH) experiments is investigated. We show that the magnetic field driven Peierls-type lattice distortion (due to the Landau leve l degeneracy) and random bond fluctuations compete with each other, resulting in a transition from a QH-metal state at relative low field to a QH-insulator state at high enough field at $ u=0$. The critical field that separates QH-metal from QH-insulator depends on the bond fluctuation. The picture explains well why the field required for observing the insulating phase is lower for a cleaner sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا