ﻻ يوجد ملخص باللغة العربية
The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as belonging to one of eight (real) symmetry classes depending on the value of $kmod 8$. We show that, depending on the symmetry class, the system may support exact many-body zero modes with the symmetries also dictating whether these may have a nonzero contribution to Majorana fermions, i.e., single-particle weight. These zero modes appear in all but two of the symmetry classes. When present, they leave clear signatures in physical observables that go beyond the threefold (Wigner-Dyson) possibilities for level spacing statistics studied earlier. Signatures we discover include a zero-energy peak or hole in the single-particle spectral function, depending on whether symmetries allow or forbid zero modes to have single-particle weight. The zero modes are also shown to influence the many-body dynamics, where signatures include a nonzero long-time limit for the out-of-time-order correlation function. Furthermore, we show that the extension of the four-body SYK model by quadratic terms can be interpreted as realizing the remaining two complex symmetry classes; we thus demonstrate how the entire tenfold Altland-Zirnbauer classification may emerge in the SYK model.
The complex Sachdev-Ye-Kitaev (cSYK) model is a charge-conserving model of randomly interacting fermions. The interaction term can be chosen such that the model exhibits chiral symmetry. Then, depending on the charge sector and the number of interact
The Sachdev-Ye-Kitaev (SYK) model is an all-to-all interacting Majorana fermion model for many-body quantum chaos and the holographic correspondence. Here we construct fermionic all-to-all Floquet quantum circuits of random four-body gates designed t
Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large $N$ theories, it has proven
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in