ترغب بنشر مسار تعليمي؟ اضغط هنا

The tenfold way and many-body zero modes in the Sachdev-Ye-Kitaev model

92   0   0.0 ( 0 )
 نشر من قبل Jan Behrends
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as belonging to one of eight (real) symmetry classes depending on the value of $kmod 8$. We show that, depending on the symmetry class, the system may support exact many-body zero modes with the symmetries also dictating whether these may have a nonzero contribution to Majorana fermions, i.e., single-particle weight. These zero modes appear in all but two of the symmetry classes. When present, they leave clear signatures in physical observables that go beyond the threefold (Wigner-Dyson) possibilities for level spacing statistics studied earlier. Signatures we discover include a zero-energy peak or hole in the single-particle spectral function, depending on whether symmetries allow or forbid zero modes to have single-particle weight. The zero modes are also shown to influence the many-body dynamics, where signatures include a nonzero long-time limit for the out-of-time-order correlation function. Furthermore, we show that the extension of the four-body SYK model by quadratic terms can be interpreted as realizing the remaining two complex symmetry classes; we thus demonstrate how the entire tenfold Altland-Zirnbauer classification may emerge in the SYK model.



قيم البحث

اقرأ أيضاً

The complex Sachdev-Ye-Kitaev (cSYK) model is a charge-conserving model of randomly interacting fermions. The interaction term can be chosen such that the model exhibits chiral symmetry. Then, depending on the charge sector and the number of interact ing fermions, level spacing statistics suggests a fourfold categorization of the model into the three Wigner-Dyson symmetry classes. In this work, inspired by previous findings for the Majorana Sachdev-Ye-Kitaev model, we embed the symmetry classes of the cSYK model in the Altland-Zirnbauer framework and identify consequences of chiral symmetry originating from correlations across different charge sectors. In particular, we show that for an odd number of fermions, the model hosts exact many-body zero modes that can be combined into a generalized fermion that does not affect the systems energy. This fermion directly leads to quantum-mechanical supersymmetry that, unlike explicitly supersymmetric cSYK constructions, does not require fine-tuned couplings, but only chiral symmetry. Signatures of the generalized fermion, and thus supersymmetry, include the long-time plateau in time-dependent correlation functions of fermion-parity-odd observables: The plateau may take nonzero value only for certain combinations of the fermion structure of the observable and the systems symmetry class. We illustrate our findings through exact diagonalization simulations of the systems dynamics.
The Sachdev-Ye-Kitaev (SYK) model is an all-to-all interacting Majorana fermion model for many-body quantum chaos and the holographic correspondence. Here we construct fermionic all-to-all Floquet quantum circuits of random four-body gates designed t o capture key features of SYK dynamics. Our circuits can be built using local ingredients in Majorana devices, namely charging-mediated interactions and braiding Majorana zero modes. This offers an analog-digital route to SYK quantum simulations that reconciles all-to-all interactions with the topological protection of Majorana zero modes, a key feature missing in existing proposals for analog SYK simulation. We also describe how dynamical, including out-of-time-ordered, correlation functions can be measured in such analog-digital implementations by employing foreseen capabilities in Majorana devices.
Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large $N$ theories, it has proven challenging to develop precise numerical tools capable of exploring this phenomenon in generic Hamiltonians. To this end, we utilize massively parallel, matrix-free Krylov subspace methods to calculate dynamical correlators in the Sachdev-Ye-Kitaev (SYK) model for up to $N = 60$ Majorana fermions. We begin by showing that numerical results for two-point correlation functions agree at high temperatures with dynamical mean field solutions, while at low temperatures finite-size corrections are quantitatively reproduced by the exactly solvable dynamics of near extremal black holes. Motivated by these results, we develop a novel finite-size rescaling procedure for analyzing the growth of out-of-time-order correlators (OTOCs). We verify that this procedure accurately determines the Lyapunov exponent, $lambda$, across a wide range in temperatures, including in the regime where $lambda$ approaches the universal bound, $lambda = 2pi/beta$.
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with a finite separation. A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation. Below the critical value, the discrete model can well reproduce various physical quantities of the original SYK model, including the volume law of the ground-state entanglement, level distribution, thermodynamic entropy, and out-of-time-order correlation (OTOC) functions. For systems of size up to $N=20$, we find that the transition point increases with system size, indicating that a relatively weak randomness of interaction can stabilize the chaotic phase. Our findings significantly relax the stringent conditions for the realization of SYK model, and can reduce the complexity of various experimental proposals down to realistic ranges.
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in its simplest form of Majorana fermions with random four-body interactions, is supersymmetric. In contrast to existing explicitly supersymmetric extensions of the model, the supersymmetry we find requires no relations between couplings. The type of supersymmetry and the structure of the supercharges are entirely set by the number of interacting Majorana modes, and are thus fundamentally linked to the models Altland-Zirnbauer classification. The supersymmetry we uncover has a natural interpretation in terms of a one-dimensional topological phase supporting Sachdev-Ye-Kitaev boundary physics, and has consequences away from the ground state, including in $q$-body dynamical correlation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا