ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconductor - Ferromagnetic Insulator - Superconductor Nanowires: Stray Field and Exchange Field

228   0   0.0 ( 0 )
 نشر من قبل Peter Krogstrup Professor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanowires can serve as flexible substrates for hybrid epitaxial growth on selected facets, allowing for design of heterostructures with complex material combinations and geometries. In this work we report on hybrid epitaxy of semiconductor - ferromagnetic insulator - superconductor (InAs/EuS/Al) nanowire heterostructures. We study the crystal growth and complex epitaxial matching of wurtzite InAs / rock-salt EuS interfaces as well as rock-salt EuS / face-centered cubic Al interfaces. Because of the magnetic anisotropy originating from the nanowire shape, the magnetic structure of the EuS phase are easily tuned into single magnetic domains. This effect efficiently ejects the stray field lines along the nanowires. With tunnel spectroscopy measurements of the density of states, we show the material has a hard induced superconducting gap, and magnetic hysteretic evolution which indicates that the magnetic exchange fields are not negligible. These hybrid nanowires fulfil key material requirements for serving as a platform for spin-based quantum applications, such as scalable topological quantum computing.



قيم البحث

اقرأ أيضاً

We fabricate AlGaN nanowires by molecular beam epitaxy and we investigate their field emission properties by means of an experimental setup using nano-manipulated tungsten tips as electrodes, inside a scanning electron microscope. The tip-shaped anod e gives access to local properties and allows collecting electrons emitted from areas as small as 1$mu m^2$. The field emission characteristics are analyzed in the framework of Fowler-Nordheim theory and we find a field enhancement factor as high as $beta$ = 556 and a minimum turn-on field $E_{turn-on}$ = 17 V/$mu$m for a cathode-anode separation distance d = 500 nm. We show that for increasing separation distance, $E_{turn-on}$ increases up to about 35 V/$mu$m and $beta$ decreases to 100 at d = 1600 nm. We also demonstrate the time stability of the field emission current from AlGaN nanowires for several minutes. Finally, we explain the observation of modified slope of the Fowler-Nordheim plots at low fields in terms of non-homogeneous field enhancement factors due to the presence of protruding emitters.
A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S is a superconducting film, thinner than the superconducting coherence length, the modification of the density of states occurs over the whole sample. The co-existence of the exchange splitting and superconducting correlations in S/FI structures leads to striking transport phenomena that are of interest for applications in thermoelectricity, superconducting spintronics and radiation sensors. Here we review the most recent progress in understanding the transport properties of FI/S structures by presenting a complete theoretical framework based on the quasiclassical kinetic equations. We discuss the coupling between the electronic degrees of freedom, charge, spin and energy, under non-equilibrium conditions and its manifestation in thermoelectricity and spin-dependent transport.
Ferroelectric field-effect transistors employ a ferroelectric material as a gate insulator, the polarization state of which can be detected using the channel conductance of the device. As a result, the devices are of potential to use in non-volatile memory technology, but suffer from short retention times, which limits their wider application. Here we report a ferroelectric semiconductor field-effect transistor in which a two-dimensional ferroelectric semiconductor, indium selenide ({alpha}-In2Se3), is used as the channel material in the device. {alpha}-In2Se3 was chosen due to its appropriate bandgap, room temperature ferroelectricity, ability to maintain ferroelectricity down to a few atomic layers, and potential for large-area growth. A passivation method based on the atomic-layer deposition of aluminum oxide (Al2O3) was developed to protect and enhance the performance of the transistors. With 15-nm-thick hafnium oxide (HfO2) as a scaled gate dielectric, the resulting devices offer high performance with a large memory window, a high on/off ratio of over 108, a maximum on-current of 862 {mu}A {mu}m-1, and a low supply voltage.
Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Neel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy (MFM) images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portends broad applicability in the burgeoning field of topological spin textures.
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe re the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا