ترغب بنشر مسار تعليمي؟ اضغط هنا

A Critical Review of Recent Progress on Negative Capacitance Field-Effect Transistors

255   0   0.0 ( 0 )
 نشر من قبل Mengwei Si
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elegant simplicity of the device concept and the urgent need for a new transistor at the twilight of Moores law have inspired many researchers in industry and academia to explore the physics and technology of negative capacitance field effect transistor (NC-FET). Although hundreds of papers have been published, the validity of quasi-static NC and the frequency-reliability limits of NC-FET are still being debated. The concept of NC - if conclusively demonstrated - will have broad impacts on device physics and technology development. Here, the authors provide a critical review of recent progress on NC-FETs research and some starting points for a coherent discussion.

قيم البحث

اقرأ أيضاً

Ferroelectric field-effect transistors employ a ferroelectric material as a gate insulator, the polarization state of which can be detected using the channel conductance of the device. As a result, the devices are of potential to use in non-volatile memory technology, but suffer from short retention times, which limits their wider application. Here we report a ferroelectric semiconductor field-effect transistor in which a two-dimensional ferroelectric semiconductor, indium selenide ({alpha}-In2Se3), is used as the channel material in the device. {alpha}-In2Se3 was chosen due to its appropriate bandgap, room temperature ferroelectricity, ability to maintain ferroelectricity down to a few atomic layers, and potential for large-area growth. A passivation method based on the atomic-layer deposition of aluminum oxide (Al2O3) was developed to protect and enhance the performance of the transistors. With 15-nm-thick hafnium oxide (HfO2) as a scaled gate dielectric, the resulting devices offer high performance with a large memory window, a high on/off ratio of over 108, a maximum on-current of 862 {mu}A {mu}m-1, and a low supply voltage.
Large capacitance enhancement is useful for increasing the gate capacitance of field-effect transistors (FETs) to produce low-energy-consuming devices with improved gate controllability. We report strong capacitance enhancement effects in a newly eme rged two-dimensional channel material, molybdenum disulfide (MoS2). The enhancement effects are due to strong electron-electron interaction at the low carrier density regime in MoS2. We achieve about 50% capacitance enhancement in monolayer devices and 10% capacitance enhancement in bilayer devices. However, the enhancement effect is not obvious in multilayer (layer number >3) devices. Using the Hartree-Fock approximation, we illustrate the same trend in our inverse compressibility data.
Negative capacitance (NC) in ferroelectrics, which stems from the imperfect screening of polarization, is considered a viable approach to lower voltage operation in the field-effect transistors (FETs) used in logic switches. In this paper, we discuss the implications of the transient nature of negative capacitance for its practical application. It is suggested that the NC effect needs to be characterized at the proper time scale to identify the type of circuits where functional NC-FETs can be used effectively.
Palladium diselenide (PdSe2) is a recently isolated layered material that has attracted a lot of interest for the pentagonal structure, the air stability and the electrical properties largely tunable by the number of layers. In this work, PdSe2 is us ed in the form of multilayer as the channel of back-gate field-effect transistors, which are studied under repeated electron irradiations. Source-drain Pd leads enable contacts with resistance below 350 kOhm um. The transistors exhibit a prevailing n-type conduction in high vacuum, which reversibly turns into ambipolar electric transport at atmospheric pressure. Irradiation by 10 keV electrons suppresses the channel conductance and promptly transforms the device from n-type to p-type. An electron fluence as low as 160 e-/nm2 dramatically change the transistor behavior demonstrating a high sensitivity of PdSe2 to electron irradiation. The sensitivity is lost after few exposures, that is a saturation condition is reached for fluence higher than 4000 e-/nm2. The damage induced by high electron fluence is irreversible as the device persist in the radiation-modified state for several hours, if kept in vacuum and at room temperature. With the support of numerical simulation, we explain such a behavior by electron-induced Se atom vacancy formation and charge trapping in slow trap states at the Si/SiO_2 interface.
Electrical characterization of few-layer MoS2 based field effect transistors with Ti/Au electrodes is performed in the vacuum chamber of a scanning electron microscope in order to study the effects of electron beam irradiation on the transport proper ties of the device. A negative threshold voltage shift and a carrier mobility enhancement is observed and explained in terms of positive charges trapped in the SiO2 gate oxide, during the irradiation. The transistor channel current is increased up to three order of magnitudes after the exposure to an irradiation dose of 100e-/nm2. Finally, a complete field emission characterization of the MoS2 flake, achieving emission stability for several hours and a minimum turn-on field of about 20 V/um with a field enhancement factor of about 500 at anode-cathode distance of 1.5um, demonstrates the suitability of few-layer MoS2 as two-dimensional emitting surface for cold-cathode applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا