ﻻ يوجد ملخص باللغة العربية
Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted features. Three major challenges are observed for a query auto completion system: (1) QAC has a strict online latency requirement. For each keystroke, results must be returned within tens of milliseconds, which poses a significant challenge in designing sophisticated language models for it. (2) For unseen queries, generated candidates are of poor quality as contextual information is not fully utilized. (3) Traditional QAC systems heavily rely on handcrafted features such as the query candidate frequency in search logs, lacking sufficient semantic understanding of the candidate. In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these challenges. On the candidate generation side, this system uses as much information as possible in unseen prefixes to generate relevant candidates, increasing the recall by a large margin. On the candidate ranking side, an unnormalized language model is proposed, which effectively captures deep semantics of queries. This approach presents better ranking performance over state-of-the-art neural ranking methods and reduces $sim$95% latency compared to neural language modeling methods. The empirical results on public datasets show that our model achieves a good balance between accuracy and efficiency. This system is served in LinkedIn job search with significant product impact observed.
Current neural query auto-completion (QAC) systems rely on character-level language models, but they slow down when queries are long. We present how to utilize subword language models for the fast and accurate generation of query completion candidate
The Bloomberg Terminal has been a leading source of financial data and analytics for over 30 years. Through its thousands of functions, the Terminal allows its users to query and run analytics over a large array of data sources, including structured,
Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion task. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In th
Neural architecture search (NAS) has been proposed to automatically tune deep neural networks, but existing search algorithms, e.g., NASNet, PNAS, usually suffer from expensive computational cost. Network morphism, which keeps the functionality of a
As a crucial role in cross-language information retrieval (CLIR), query translation has three main challenges: 1) the adequacy of translation; 2) the lack of in-domain parallel training data; and 3) the requisite of low latency. To this end, existing