ﻻ يوجد ملخص باللغة العربية
Current neural query auto-completion (QAC) systems rely on character-level language models, but they slow down when queries are long. We present how to utilize subword language models for the fast and accurate generation of query completion candidates. Representing queries with subwords shorten a decoding length significantly. To deal with issues coming from introducing subword language model, we develop a retrace algorithm and a reranking method by approximate marginalization. As a result, our model achieves up to 2.5 times faster while maintaining a similar quality of generated results compared to the character-level baseline. Also, we propose a new evaluation metric, mean recoverable length (MRL), measuring how many upcoming characters the model could complete correctly. It provides more explicit meaning and eliminates the need for prefix length sampling for existing rank-based metrics. Moreover, we performed a comprehensive analysis with ablation study to figure out the importance of each component.
Query Auto Completion (QAC), as the starting point of information retrieval tasks, is critical to user experience. Generally it has two steps: generating completed query candidates according to query prefixes, and ranking them based on extracted feat
The Bloomberg Terminal has been a leading source of financial data and analytics for over 30 years. Through its thousands of functions, the Terminal allows its users to query and run analytics over a large array of data sources, including structured,
A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially f
Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion task. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In th
Embedding from Language Models (ELMo) has shown to be effective for improving many natural language processing (NLP) tasks, and ELMo takes character information to compose word representation to train language models.However, the character is an insu