ﻻ يوجد ملخص باللغة العربية
We describe our system for SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. We developed ensemble models using RoBERTa-based neural architectures, additional CRF layers, transfer learning between the two subtasks, and advanced post-processing to handle the multi-label nature of the task, the consistency between nested spans, repetitions, and labels from similar spans in training. We achieved sizable improvements over baseline fine-tuned RoBERTa models, and the official evaluation ranked our system 3rd (almost tied with the 2nd) out of 36 teams on the span identification subtask with an F1 score of 0.491, and 2nd (almost tied with the 1st) out of 31 teams on the technique classification subtask with an F1 score of 0.62.
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated
This paper describes our submission to subtask a and b of SemEval-2020 Task 4. For subtask a, we use a ALBERT based model with improved input form to pick out the common sense statement from two statement candidates. For subtask b, we use a multiple
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BER
This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using cr
This paper describes our system for SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. We use Three-way Attentive Networks (TriAN) to model interactions between the passage, question and answers. To incorporate commonsense knowl