ﻻ يوجد ملخص باللغة العربية
We consider a simple dynamical and relativistic model to explain the spectro-temporal structure often displayed by repeating fast radio bursts (FRBs). We show how this model can account for the downward frequency drift in a sequence of sub-bursts of increasing arrival time (the sad trombone effect) and their tendency for exhibiting a reduced pulse width with increasing frequency of observation. Most importantly, this model also predicts a systematic inverse relationship between the (steeper) slope of the frequency drift observed within a single sub-burst and its temporal duration. Using already published data for FRB 121102 we find and verify the relationship predicted by this model. We therefore argue that the overall behaviour observed for this object as a function of frequency is consistent with an underlying narrow-band emission process, where the wide-band nature of the measured FRB spectrum is due to relativistic motions. Although this scenario and the simple dynamics we consider could be applied to other theories, they are well-suited for a model based upon Dickes superradiance as the physical process responsible for FRB radiation in this and similar sources.
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal c
We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at
In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from K{i}rm{i}z{i}bayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that t
We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We detected a total of 133 bursts in 3 hours of data at a center frequency of 1.4 GHz using the Arecibo Telescope, and develop robus
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA a