ﻻ يوجد ملخص باللغة العربية
In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from K{i}rm{i}z{i}bayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that the fluence distributions of magnetar bursts are well described by power-law functions with indices 1.84, 1.68, and 1.65 for SGR J1550-5418, SGR 1806-20 and SGR 1900+14, respectively. The duration distributions of magnetar bursts also show power-law forms. Meanwhile, the waiting time distribution can be described by a non-stationary Poisson process with an exponentially growing occurrence rate. These distributive features indicate that magnetar bursts can be regarded as a self-organizing critical process. We also compare these distributions with the repeating FRB 121102. The statistical properties of repeating FRB 121102 are similar with magentar bursts, combing with the large required magnetic filed ($Bgeq 10^{14}$G) of neutron star for FRB 121102, which indicates that the central engine of FRB 121102 may be a magnetar.
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal c
We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at
We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We detected a total of 133 bursts in 3 hours of data at a center frequency of 1.4 GHz using the Arecibo Telescope, and develop robus
We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Are
We report polarization properties for eight narrowband bursts from FRB 121102 that have been re-detected in a high-frequency (4-8 GHz) Breakthrough Listen observation with the Green Bank Telescope, originally taken on 2017 August 26. The bursts were