ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical properties magnetar bursts and FRB 121102

93   0   0.0 ( 0 )
 نشر من قبل Fayin Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from K{i}rm{i}z{i}bayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that the fluence distributions of magnetar bursts are well described by power-law functions with indices 1.84, 1.68, and 1.65 for SGR J1550-5418, SGR 1806-20 and SGR 1900+14, respectively. The duration distributions of magnetar bursts also show power-law forms. Meanwhile, the waiting time distribution can be described by a non-stationary Poisson process with an exponentially growing occurrence rate. These distributive features indicate that magnetar bursts can be regarded as a self-organizing critical process. We also compare these distributions with the repeating FRB 121102. The statistical properties of repeating FRB 121102 are similar with magentar bursts, combing with the large required magnetic filed ($Bgeq 10^{14}$G) of neutron star for FRB 121102, which indicates that the central engine of FRB 121102 may be a magnetar.



قيم البحث

اقرأ أيضاً

FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal c omplex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 +/- 0.07 pc/cc at MJD 57644. After correcting for dispersive delay, we find that the sub-bursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1-1.7 GHz band, the ~ 0.5-1-ms sub-bursts have typical bandwidths ranging from 100-400 MHz, and a characteristic drift rate of ~ 200 MHz/ms towards lower frequencies. At higher radio frequencies, the sub-burst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of Delta(DM) ~ 1-3 pc/cc in 4 years, though this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula.
We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at 1.4 GHz. The bursts are generally detected in less than a third of the 580-MHz observing bandwidth, demonstrating that narrow-band FRB signals may be more common than previously thought. We show that the bursts are likely fai
We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We detected a total of 133 bursts in 3 hours of data at a center frequency of 1.4 GHz using the Arecibo Telescope, and develop robus t modeling strategies to constrain the spectro-temporal properties of all the bursts in the sample. Most of the burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz. We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also find that the peak of the log-normal distribution of wait times decreases from 207 s to 75 s using our larger sample of bursts. Our observations do not favor either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity in the bursts using multiple techniques, but did not detect any significant period. The cumulative burst energy distribution exhibits a broken power-law shape, with the lower and higher-energy slopes of $-0.4pm0.1$ and $-1.8pm0.2$, with the break at $(2.3pm0.2)times 10^{37}$ ergs. We provide our burst fitting routines as a python package textsc{burstfit}. All the other analysis scripts and results are publicly available.
We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Are cibo Observatory for a total of 17 bursts from this source. All have dispersion measures consistent with a single value ($sim559$ pc cm$^{-3}$) that is three times the predicted maximum Galactic value. The 2-GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2-GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5$sigma$ upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined with archival WISE 22-$mu$m and IPHAS H$alpha$ surveys, rules out the presence of an intervening Galactic HII region. We update our estimate of the FRB detection rate in the PALFA survey to be 1.1$^{+3.7}_{-1.0} times 10^4$ FRBs sky$^{-1}$ day$^{-1}$ (95% confidence) for peak flux density at 1.4 GHz above 300 mJy. We find that the intrinsic widths of the 12 FRB 121102 bursts from Arecibo are, on average, significantly longer than the intrinsic widths of the 13 single-component FRBs detected with the Parkes telescope.
We report polarization properties for eight narrowband bursts from FRB 121102 that have been re-detected in a high-frequency (4-8 GHz) Breakthrough Listen observation with the Green Bank Telescope, originally taken on 2017 August 26. The bursts were found to exhibit nearly 100% linear polarization, Faraday rotation measures (RM) bordering 9.3$times$10$^4$ rad-m$^{-2}$, and stable polarization position angles (PA), all of which agree with burst properties previously reported for FRB 121102 at the same epoch. We confirm that these detections are indeed physical bursts with limited spectral occupancies and further support the use of sub-banded search techniques in FRB detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا