ﻻ يوجد ملخص باللغة العربية
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1-8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 +/- 0.07 pc/cc at MJD 57644. After correcting for dispersive delay, we find that the sub-bursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1-1.7 GHz band, the ~ 0.5-1-ms sub-bursts have typical bandwidths ranging from 100-400 MHz, and a characteristic drift rate of ~ 200 MHz/ms towards lower frequencies. At higher radio frequencies, the sub-burst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of Delta(DM) ~ 1-3 pc/cc in 4 years, though this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula.
In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from K{i}rm{i}z{i}bayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that t
We consider a simple dynamical and relativistic model to explain the spectro-temporal structure often displayed by repeating fast radio bursts (FRBs). We show how this model can account for the downward frequency drift in a sequence of sub-bursts of
We present 41 bursts from the first repeating fast radio burst discovered (FRB 121102). A deep search has allowed us to probe unprecedentedly low burst energies during two consecutive observations (separated by one day) using the Arecibo telescope at
We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We detected a total of 133 bursts in 3 hours of data at a center frequency of 1.4 GHz using the Arecibo Telescope, and develop robus
While repeating fast radio bursts (FRBs) remain scarce in number, they provide a unique opportunity for follow-up observations that enhance our knowledge of their sources and potentially of the FRB population as a whole. Attaining more burst spectra