ﻻ يوجد ملخص باللغة العربية
Molecular oxygen, nitrogen, and ozone have been detected in the Solar System. They are also expected to be present in ice-grain mantles within star-forming regions. Laboratory experiments that simulate energetic processing (ions, photons, and electrons) of ices are essential for interpreting and directing future astronomical observations. We provide VUV photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2 , and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons.
Carbonic acid (H2CO3) is a weak acid relevant to astrobiology which, to date, remains undetected in space. Experimental work has shown that the beta-polymorph of H2CO3 forms under space relevant conditions through energetic (UV photon, electron, and
Non-thermal desorption from icy grains containing H$_2$CO has been invoked to explain the observed H$_2$CO gas phase abundances in ProtoPlanetary Disks (PPDs) and Photon Dominated Regions (PDRs). Photodesorption is thought to play a key role, however
Oxygen atom addition and insertion reactions may provide a pathway to chemical complexity in ices that are too cold for radicals to diffuse and react. We have studied the ice-phase reactions of photo-produced oxygen atoms with C2 hydrocarbons under I
Sensitive 5-38 um Spitzer Space Telescope (SST) and ground based 3-5 um spectra of the embedded low mass protostars B5 IRS1 and HH46 IRS show deep ice absorption bands superposed on steeply rising mid-infrared continua. The ices likely originate in t
Ices are an important constituent of protoplanetary disks. New observational facilities, notably JWST, will greatly enhance our view of disk ices by measuring their infrared spectral features. We present a suite of models to complement these upcoming