ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Space Telescope Spectroscopy of Ices toward Low Mass Embedded Protostars

73   0   0.0 ( 0 )
 نشر من قبل Adwin Boogert
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensitive 5-38 um Spitzer Space Telescope (SST) and ground based 3-5 um spectra of the embedded low mass protostars B5 IRS1 and HH46 IRS show deep ice absorption bands superposed on steeply rising mid-infrared continua. The ices likely originate in the circumstellar envelopes. The CO2 bending mode at 15 um is a particularly powerful tracer of the ice composition and processing history. Toward these protostars, this band shows little evidence for thermal processing at temperatures above 50 K. Signatures of lower temperature processing are present in the CO and OCN- bands, however. The observed CO2 profile indicates an intimate mixture with H2O, but not necessarily with CH3OH, in contrast to some high mass protostars. This is consistent with the low CH3OH abundance derived from the ground based L band spectra. The CO2/H2O column density ratios are high in both B5 IRS1 and HH46 IRS (~35%). Clearly, the SST spectra are essential to study ice evolution in low mass protostellar environments, and to eventually determine the relation between interstellar and solar system ices.

قيم البحث

اقرأ أيضاً

A powerful way to observe directly the solid state inventory of dense molecular clouds is by infrared spectroscopy of background stars. We present Spitzer/IRS 5-20 micron spectra of ices toward stars behind the Serpens and Taurus molecular clouds, pr obing visual extinctions of 10-34 mag. These data provide the first complete inventory of solid-state material in dense clouds before star formation begins. The spectra show prominent 6.0 and 6.85 micron bands. In contrast to some young stellar objects (YSOs), most (~75%) of the 6.0 micron band is explained by the bending mode of pure water ice. In realistic mixtures this number increases to 85%, because the peak strength of the water bending mode is very sensitive to the molecular environment. The strength of the 6.85 micron band is comparable to what is observed toward YSOs. Thus, the production of the carrier of this band does not depend on the energetic input of a nearby source. The spectra show large abundances of carbon monoxide and carbon dioxide (20-40% with respect to water ice). Compared to YSOs, the band profile of the 15 micron carbon dioxide bending mode lacks the signatures of crystallization, confirming the cold, pristine nature of these lines of sight. After the dominant species are removed, there are residuals that suggest the presence of minor species such as formic acid and possibly ammonia. Clearly, models of star formation should begin with dust models already coated with a fairly complex mixture of ices.
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations between sources. We present observations towards 16 deeply embedded (Class 0/I) low-mass protostars using the IRAM 30m telescope. We detect CH$_2$CO, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, CH$_3$CN, HNCO, and HC$_3$N towards 67%, 37%, 13%, 13%, 44%, 81%, and 75% of sources respectively. Median column densities derived using survival analysis range between 6.0x10$^{10}$ cm$^{-2}$ (CH$_3$CN) and 2.4x10$^{12}$ cm$^{-2}$ (CH$_3$OCH$_3$) and median abundances range between 0.48% (CH$_3$CN) and 16% (HNCO) with respect to CH$_3$OH. Column densities for each molecule vary by about one order of magnitude across the sample. Abundances with respect to CH$_3$OH are more narrowly distributed, especially for oxygen-bearing species. We compare observed median abundances with a chemical model for low-mass protostars and find fair agreement, although some modeling work remains to bring abundances higher with respect to CH$_3$OH. Median abundances with respect to CH$_3$OH in LYSOs are also found to be generally comparable to observed abundances in hot cores, hot corinos, and massive young stellar objects. Compared with comets, our sample is comparable for all molecules except HC$_3$N and CH$_2$CO, which likely become depleted at later evolutionary stages.
(Abridged*) Models of the young solar nebula assume a hot initial disk with most volatiles are in the gas phase. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies ha ve yet been performed on the extent of snowlines in an embedded accreting disk (Stage 0). Quantify the location of gas-phase volatiles in embedded actively accreting disk system. Two-dimensional physical and radiative transfer models have been used to calculate the temperature structure of embedded protostellar systems. Gas and ice abundances of H$_2$O, CO$_2$, and CO are calculated using the density-dependent thermal desorption formulation. The midplane water snowline increases from 3 to 55 AU for accretion rates through the disk onto the star between $10^{-9}$-$10^{-4} M_{odot} {rm yr^{-1}}$. CO$_2$ can remain in the solid phase within the disk for $dot{M} leq 10^{-5} M_{odot} {rm yr^{-1}}$ down to $sim 20$ AU. Most of the CO is in the gas phase within an actively accreting disk independent of disk properties and accretion rate. The predicted optically thin water isotopolog emission is consistent with the detected H$_2^{18}$O emission toward the Stage 0 embedded young stellar objects, originating from both the disk and the warm inner envelope (hot core). An accreting embedded disk can only account for water emission arising from $R < 50$ AU, however, and the extent rapidly decreases for low accretion rates. Thus, the radial extent of the emission can be measured with ALMA observations and compared to this limit. Volatiles sublimate out to 50 AU in young disks and can reset the chemical content inherited from the envelope in periods of high accretion rates. A hot young solar nebula out to 30 AU can only have occurred during the deeply embedded Stage 0, not during the T-Tauri phase of our early solar system.
We present full spectral scans from 200-670$mu$m of 26 Class 0+I protostellar sources, obtained with $Herschel$-SPIRE, as part of the COPS-SPIRE Open Time program, complementary to the DIGIT and WISH Key programs. Based on our nearly continuous, line -free spectra from 200-670 $mu$m, the calculated bolometric luminosities ($L_{rm bol}$) increase by 50% on average, and the bolometric temperatures ($T_{rm bol}$) decrease by 10% on average, in comparison with the measurements without Herschel. Fifteen protostars have the same Class using $T_{rm bol}$ and $L_{rm bol}$/$L_{rm submm}$. We identify rotational transitions of CO lines from J=4-3 to J=13-12, along with emission lines of $^{13}$CO, HCO$^+$, H$_{2}$O, and [CI]. The ratios of $^{12}$CO to $^{13}$CO indicate that $^{12}$CO emission remains optically thick for $J_{rm up}$ < 13. We fit up to four components of temperature from the rotational diagram with flexible break points to separate the components. The distribution of rotational temperatures shows a primary population around 100 K with a secondary population at $sim$350 K. We quantify the correlations of each line pair found in our dataset, and find the strength of correlation of CO lines decreases as the difference between $J$-level between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved profiles are consistent with this smooth distribution if each physical component contributes to a wide range of CO lines with significant overlap in the CO ladder. We investigate the spatial extent of CO emission and find that the morphology is more centrally peaked and less bipolar at high-$J$ lines. We find the CO emission observed with SPIRE related to outflows, which consists two components, the entrained gas and shocked gas, as revealed by our rotational diagram analysis as well as the studies with velocity-resolved CO emission.
126 - R. Visser 2011
Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا