ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: Formation and destruction of solid carbonic acid upon 1~keV electron irradiation

60   0   0.0 ( 0 )
 نشر من قبل Sergio Ioppolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbonic acid (H2CO3) is a weak acid relevant to astrobiology which, to date, remains undetected in space. Experimental work has shown that the beta-polymorph of H2CO3 forms under space relevant conditions through energetic (UV photon, electron, and cosmic ray) processing of CO2- and H2O-rich ices. We present a systematic set of VUV photoabsorption spectra of pure and mixed CO2 and H2O ices exposed to 1 keV electrons at 20 and 80 K to simulate different interstellar and Solar System environments. Ices were then annealed to obtain a layer of pure H2CO3 which was further exposed to 1 keV electrons at 20 and 80 K to monitor its destruction pathway. Fourier-transform infrared (FT-IR) spectroscopy was used as a secondary probe providing complementary information on the physicochemical changes within an ice. Our laboratory work shows that the formation of solid H2CO3, CO, and O3 upon the energetic processing of CO2:H2O ice mixtures is temperature-dependent in the range between 20 and 80 K. The amorphous to crystalline phase transition of H2CO3 ice is investigated for the first time in the VUV spectral range by annealing the ice at 200 and 225 K. We have detected two photoabsorption bands at 139 and 200 nm, and we assigned them to beta-H2CO3 and gamma-H2CO3, respectively. We present VUV spectra of the electron irradiation of annealed H2CO3 ice at different temperatures leading to its decomposition into CO2, H2O, and CO ice. Laboratory results are compared to Cassini UltraViolet Imaging Spectrograph observations of the 70-90 K ice surface of Saturns satellites Enceladus, Dione, and Rhea.



قيم البحث

اقرأ أيضاً

Molecular oxygen, nitrogen, and ozone have been detected in the Solar System. They are also expected to be present in ice-grain mantles within star-forming regions. Laboratory experiments that simulate energetic processing (ions, photons, and electro ns) of ices are essential for interpreting and directing future astronomical observations. We provide VUV photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium. We present VUV photoabsorption spectra of frozen O2 and N2, a 1:1 mixture of both, and a new systematic set of pure and mixed nitrogen oxide ices. Spectra were obtained at 22 K before and after 1 keV electron bombardment of the ice sample. Ices were then annealed to higher temperatures to study their thermal evolution. In addition, Fourier-transform infrared spectroscopy was used as a secondary probe of molecular synthesis to better identify the physical and chemical processes at play. Our VUV data show that ozone and the azide radical (N3) are observed in our experiments after electron irradiation of pure O2 and N2 ices, respectively. Energetic processing of an O2:N2 = 1:1 ice mixture leads to the formation of ozone along with a series of nitrogen oxides. The electron irradiation of solid nitrogen oxides, pure and in mixtures, induces the formation of new species such as O2, N2 , and other nitrogen oxides not present in the initial ice. Results are discussed here in light of their relevance to various astrophysical environments. Finally, we show that VUV spectra of solid NO2 and water can reproduce the observational VUV profile of the cold surface of Enceladus, Dione, and Rhea, strongly suggesting the presence of nitrogen oxides on the surface of the icy Saturn moons.
Non-thermal desorption from icy grains containing H$_2$CO has been invoked to explain the observed H$_2$CO gas phase abundances in ProtoPlanetary Disks (PPDs) and Photon Dominated Regions (PDRs). Photodesorption is thought to play a key role, however no absolute measurement of the photodesorption from H$_2$CO ices were performed up to now, so that a default value is used in the current astrophysical models. As photodesorption yields differ from one molecule to the other, it is crucial to experimentally investigate photodesorption from H$_2$CO ices. We measured absolute wavelength-resolved photodesorption yields from pure H$_2$CO ices, H$_2$CO on top of a CO ice (H$_2$CO/CO), and H$_2$CO mixed with CO ice (H$_2$CO:CO) irradiated in the Vacuum UltraViolet (VUV) range (7-13.6~eV). Photodesorption from a pure H$_2$CO ice releases H$_2$CO in the gas phase, but also fragments, such as CO and H$_2$. Energy-resolved photodesorption spectra, coupled with InfraRed (IR) and Temperature Programmed Desorption (TPD) diagnostics, showed the important role played by photodissociation and allowed to discuss photodesorption mechanisms. For the release of H$_2$CO in the gas phase, they include Desorption Induced by Electronic Transitions (DIET), indirect DIET through CO-induced desorption of H$_2$CO and photochemical desorption. We found that H$_2$CO photodesorbs with an average efficiency of $sim 4-10 times 10^{-4}$ molecule/photon, in various astrophysical environments. H$_2$CO and CO photodesorption yields and photodesorption mechanisms, involving photofragmentation of H$_2$CO, can be implemented in astrochemical codes. The effects of photodesorption on gas/solid abundances of H$_2$CO and all linked species from CO to Complex Organic Molecules (COMs), and on the H$_2$CO snowline location, are now on the verge of being unravelled.
99 - Kevin France 2017
The Large Ultraviolet / Optical / Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. The LUVOIR Ultraviolet Multi-Object Spect rograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000-18,000) and medium (R = 30,000-65,000) resolution modes across the far-ultraviolet (FUV: 100-200 nm) and near-ultraviolet (NUV: 200-400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 x 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100-200nm, 13 milliarcsecond angular resolution, 2 x 2 arcminute field-of-view) that will employ a complement of narrow and medium-band filters. We present an overview of LUMOS observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example LUMOS 100-hour Highlights observing programs are presented to demonstrate the potential power of LUVOIRs ultraviolet spectroscopic capabilities.
We present a mechanism for the crystalline silicate production associated with the formation and subsequent destruction of massive fragments in young protostellar disks. The fragments form in the embedded phase of star formation via disk fragmentatio n at radial distances ga 50-100 AU and anneal small amorphous grains in their interior when the gas temperature exceeds the crystallization threshold of ~ 800 K. We demonstrate that fragments that form in the early embedded phase can be destroyed before they either form solid cores or vaporize dust grains, thus releasing the processed crystalline dust into various radial distances from sub-AU to hundred-AU scales. Two possible mechanisms for the destruction of fragments are the tidal disruption and photoevaporation as fragments migrate radially inward and approach the central star and also dispersal by tidal torques exerted by spiral arms. As a result, most of the crystalline dust concentrates to the disk inner regions and spiral arms, which are the likely sites of fragment destruction.
Vacuum-UV (VUV) photodesorption from water-rich ice mantles coating interstellar grains is known to play an important role in the gas-to-ice ratio in star- and planet-forming regions. Quantitative photodesorption yields from water ice are crucial for astrochemical models. We aim to provide the first quantitative photon-energy dependent photodesorption yields from water ice in the VUV. This information is important to understand the photodesorption mechanisms and to account for the variation of the yields under interstellar irradiation conditions. Experiments have been performed on the DESIRS beamline at the SOLEIL synchrotron, delivering tunable VUV light, using the SPICES (Surface Processes and ICES) set-up. Compact amorphous solid water ice (H$_2$O and D$_2$O) has been irradiated from 7 to 13.5 eV. Quantitative yields have been obtained by detection in the gas phase with mass-spectrometry for sample temperatures ranging from 15 K to 100 K. Photodesorption spectra of H$_2$O (D$_2$O), OH (OD), H$_2$ (D$_2$) and O$_2$ peak around 9-10 eV and decrease at higher energies. Average photodesorption yields of intact water at 15 K are 5 $times$ 10$^{-4}$ molecule/photon for H$_2$O and 5 $times$ 10$^{-5}$ molecule/photon for D$_2$O over the 7-13.5 eV range. The strong isotopic effect can be explained by a differential chemical recombination between OH (OD) and H (D) photofragments originating from lower kinetic energy available for the OH photofragments upon direct water photodissociation and/or possibly by an electronic relaxation process. It is expected to contribute to water fractionation during the building-up of the ice grain mantles in molecular clouds and to favor OH-poor chemical environment in comet-formation regions of protoplanetary disks. The yields of all the detected species except OH (OD) are enhanced above (70 $pm$10) K, suggesting an ice restructuration at this temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا