ﻻ يوجد ملخص باللغة العربية
Classical iterative algorithms for linear system solving and regression are brittle to the condition number of the data matrix. Even a semi-random adversary, constrained to only give additional consistent information, can arbitrarily hinder the resulting computational guarantees of existing solvers. We show how to overcome this barrier by developing a framework which takes state-of-the-art solvers and robustifies them to achieve comparable guarantees against a semi-random adversary. Given a matrix which contains an (unknown) well-conditioned submatrix, our methods obtain computational and statistical guarantees as if the entire matrix was well-conditioned. We complement our theoretical results with preliminary experimental evidence, showing that our methods are effective in practice.
We give lower bounds on the performance of two of the most popular sampling methods in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian Monte Carlo (HMC) with a leapfrog integrator, when applied to well-condition
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heatbath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The r
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the
A hierarchical solver is proposed for solving sparse ill-conditioned linear systems in parallel. The solver is based on a modification of the LoRaSp method, but employs a deferred-compression technique, which provably reduces the approximation error
Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhib