ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Transition Models with Time-delayed Causal Relations

267   0   0.0 ( 0 )
 نشر من قبل Junchi Liang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces an algorithm for discovering implicit and delayed causal relations between events observed by a robot at arbitrary times, with the objective of improving data-efficiency and interpretability of model-based reinforcement learning (RL) techniques. The proposed algorithm initially predicts observations with the Markov assumption, and incrementally introduces new hidden variables to explain and reduce the stochasticity of the observations. The hidden variables are memory units that keep track of pertinent past events. Such events are systematically identified by their information gains. The learned transition and reward models are then used for planning. Experiments on simulated and real robotic tasks show that this method significantly improves over current RL techniques.

قيم البحث

اقرأ أيضاً

Predictive models -- learned from observational data not covering the complete data distribution -- can rely on spurious correlations in the data for making predictions. These correlations make the models brittle and hinder generalization. One soluti on for achieving strong generalization is to incorporate causal structures in the models; such structures constrain learning by ignoring correlations that contradict them. However, learning these structures is a hard problem in itself. Moreover, its not clear how to incorporate the machinery of causality with online continual learning. In this work, we take an indirect approach to discovering causal models. Instead of searching for the true causal model directly, we propose an online algorithm that continually detects and removes spurious features. Our algorithm works on the idea that the correlation of a spurious feature with a target is not constant over-time. As a result, the weight associated with that feature is constantly changing. We show that by continually removing such features, our method converges to solutions that have strong generalization. Moreover, our method combined with random search can also discover non-spurious features from raw sensory data. Finally, our work highlights that the information present in the temporal structure of the problem -- destroyed by shuffling the data -- is essential for detecting spurious features online.
Machine learning has shown much promise in helping improve the quality of medical, legal, and economic decision-making. In these applications, machine learning models must satisfy two important criteria: (i) they must be causal, since the goal is typ ically to predict individual treatment effects, and (ii) they must be interpretable, so that human decision makers can validate and trust the model predictions. There has recently been much progress along each direction independently, yet the state-of-the-art approaches are fundamentally incompatible. We propose a framework for learning causal interpretable models---from observational data---that can be used to predict individual treatment effects. Our framework can be used with any algorithm for learning interpretable models. Furthermore, we prove an error bound on the treatment effects predicted by our model. Finally, in an experiment on real-world data, we show that the models trained using our framework significantly outperform a number of baselines.
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works, and then use this learned model to plan coordinated sequences of actions to bring about desired outcomes. However, learni ng a model that captures the dynamics of complex skills represents a major challenge: if the agent needs a good model to perform these skills, it might never be able to collect the experience on its own that is required to learn these delicate and complex behaviors. Instead, we can imagine augmenting the training set with observational data of other agents, such as humans. Such data is likely more plentiful, but represents a different embodiment. For example, videos of humans might show a robot how to use a tool, but (i) are not annotated with suitable robot actions, and (ii) contain a systematic distributional shift due to the embodiment differences between humans and robots. We address the first challenge by formulating the corresponding graphical model and treating the action as an observed variable for the interaction data and an unobserved variable for the observation data, and the second challenge by using a domain-dependent prior. In addition to interaction data, our method is able to leverage videos of passive observations in a driving dataset and a dataset of robotic manipulation videos. A robotic planning agent equipped with our method can learn to use tools in a tabletop robotic manipulation setting by observing humans without ever seeing a robotic video of tool use.
We propose an adversarial training procedure for learning a causal implicit generative model for a given causal graph. We show that adversarial training can be used to learn a generative model with true observational and interventional distributions if the generator architecture is consistent with the given causal graph. We consider the application of generating faces based on given binary labels where the dependency structure between the labels is preserved with a causal graph. This problem can be seen as learning a causal implicit generative model for the image and labels. We devise a two-stage procedure for this problem. First we train a causal implicit generative model over binary labels using a neural network consistent with a causal graph as the generator. We empirically show that WassersteinGAN can be used to output discrete labels. Later, we propose two new conditional GAN architectures, which we call CausalGAN and CausalBEGAN. We show that the optimal generator of the CausalGAN, given the labels, samples from the image distributions conditioned on these labels. The conditional GAN combined with a trained causal implicit generative model for the labels is then a causal implicit generative model over the labels and the generated image. We show that the proposed architectures can be used to sample from observational and interventional image distributions, even for interventions which do not naturally occur in the dataset.
222 - JaeWon Choi , Sung-eui Yoon 2019
At an early age, human infants are able to learn and build a model of the world very quickly by constantly observing and interacting with objects around them. One of the most fundamental intuitions human infants acquire is intuitive physics. Human in fants learn and develop these models, which later serve as prior knowledge for further learning. Inspired by such behaviors exhibited by human infants, we introduce a graphical physics network integrated with deep reinforcement learning. Specifically, we introduce an intrinsic reward normalization method that allows our agent to efficiently choose actions that can improve its intuitive physics model the most. Using a 3D physics engine, we show that our graphical physics network is able to infer objects positions and velocities very effectively, and our deep reinforcement learning network encourages an agent to improve its model by making it continuously interact with objects only using intrinsic motivation. We experiment our model in both stationary and non-stationary state problems and show benefits of our approach in terms of the number of different actions the agent performs and the accuracy of agents intuition model. Videos are at https://www.youtube.com/watch?v=pDbByp91r3M&t=2s

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا